Drought is the most important environmental stress affecting agriculture worldwide. Exploiting yield potential and maintaining yield stability of crops in water-limited environments are urgent tasks that must be under...Drought is the most important environmental stress affecting agriculture worldwide. Exploiting yield potential and maintaining yield stability of crops in water-limited environments are urgent tasks that must be undertaken in order to guarantee food supply for the increasing world population. Tremendous efforts have been devoted to identifying key regulators in plant drought response through genetic, molecular, and biochemical studies using, in most cases, the model species Arabidopsis thaliana. However, only a small portion of these regulators have been explored as potential candidate genes for their application in the improvement of drought tolerance in crops. Based on biological functions, these genes can be classified into the following three categories: (1) stress-responsive transcriptional regulation (e.g. DREB1, AREB, NF-YB); (2) post-transcriptional RNA or protein modifications such as phosphorylation/dephosphorylation (e.g. SnRK2, ABI1) and farnesylation (e.g. ERA1); and (3) osomoprotectant metabolism or molecular chaperones (e.g. CspB). While continuing down the path to discovery of new target genes, serious efforts are also focused on fine-tuning the expression of the known candidate genes for stress tolerance in specific temporal and spatial patterns to avoid negative effects in plant growth and development. These efforts are starting to bear fruit by showing yield improvements in several crops under a variety of water-deprivation conditions. As most such evaluations have been performed under controlled growth environments, a gap still remains between early success in the laboratory and the application of these techniques to the elite cultivars of staple crops in the field. Nevertheless, significant progress has been made in the identification of signaling pathways and master regulators for drought tolerance. The knowledge acquired will facilitate the genetic engineering of single or multiple targets and quantitative trait loci in key crops to create commercialrade cultiv展开更多
Hybrid-driven underwater glider is a new type of tmmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have...Hybrid-driven underwater glider is a new type of tmmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have good maneuverability and can travel with a high speed, while the traditional underwater gliders are highlighted by low power consumption, long voyage, long endurance and good stealth characteristics. The hybrid-driven underwater gliders can realize variable motion profiles by their own buoyancy-driven and propeller propulsion systems. Stability of the mechanical system determines the performance of the system. In this paper, the Petrel-II hybrid-driven underwater glider developed by Tianjin University is selected as the research object and the stability of hybrid-driven underwater glider unitedly controlled by buoyancy and propeller has been targeted and evidenced. The dimensionless equations of the hybrid-driven underwater glider are obtained when the propeller is working. Then, the steady speed and steady glide path angle under steady-state motion have also been achieved. The steady-state operating conditions can be calculated when the hybrid-driven underwater glider reaches the desired steady-state motion. And the steady- state operating conditions are relatively conservative at the lower bound of the velocity range compared with the range of the velocity derived from the method of the composite Lyapunov function. By calculating the hydrodynamic coefficients of the Petrel-II hybrid-driven underwater glider, the simulation analysis has been conducted. In addition, the results of the field trials conducted in the South China Sea and the Danjiangkou Reservoir of China have been presented to illustrate the validity of the analysis and simulations.and to show the feasibility of the method of the composite Lyapunov function which verifies the stability of the Petrel-II hybrid-driven underwater glider.展开更多
文摘Drought is the most important environmental stress affecting agriculture worldwide. Exploiting yield potential and maintaining yield stability of crops in water-limited environments are urgent tasks that must be undertaken in order to guarantee food supply for the increasing world population. Tremendous efforts have been devoted to identifying key regulators in plant drought response through genetic, molecular, and biochemical studies using, in most cases, the model species Arabidopsis thaliana. However, only a small portion of these regulators have been explored as potential candidate genes for their application in the improvement of drought tolerance in crops. Based on biological functions, these genes can be classified into the following three categories: (1) stress-responsive transcriptional regulation (e.g. DREB1, AREB, NF-YB); (2) post-transcriptional RNA or protein modifications such as phosphorylation/dephosphorylation (e.g. SnRK2, ABI1) and farnesylation (e.g. ERA1); and (3) osomoprotectant metabolism or molecular chaperones (e.g. CspB). While continuing down the path to discovery of new target genes, serious efforts are also focused on fine-tuning the expression of the known candidate genes for stress tolerance in specific temporal and spatial patterns to avoid negative effects in plant growth and development. These efforts are starting to bear fruit by showing yield improvements in several crops under a variety of water-deprivation conditions. As most such evaluations have been performed under controlled growth environments, a gap still remains between early success in the laboratory and the application of these techniques to the elite cultivars of staple crops in the field. Nevertheless, significant progress has been made in the identification of signaling pathways and master regulators for drought tolerance. The knowledge acquired will facilitate the genetic engineering of single or multiple targets and quantitative trait loci in key crops to create commercialrade cultiv
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51475319 and 51722508)the National Key R&D Plan(Grant No.2016YFC0301100)Aoshan Talents Program of Qingdao National Laboratory for Marine Science and Technology
文摘Hybrid-driven underwater glider is a new type of tmmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have good maneuverability and can travel with a high speed, while the traditional underwater gliders are highlighted by low power consumption, long voyage, long endurance and good stealth characteristics. The hybrid-driven underwater gliders can realize variable motion profiles by their own buoyancy-driven and propeller propulsion systems. Stability of the mechanical system determines the performance of the system. In this paper, the Petrel-II hybrid-driven underwater glider developed by Tianjin University is selected as the research object and the stability of hybrid-driven underwater glider unitedly controlled by buoyancy and propeller has been targeted and evidenced. The dimensionless equations of the hybrid-driven underwater glider are obtained when the propeller is working. Then, the steady speed and steady glide path angle under steady-state motion have also been achieved. The steady-state operating conditions can be calculated when the hybrid-driven underwater glider reaches the desired steady-state motion. And the steady- state operating conditions are relatively conservative at the lower bound of the velocity range compared with the range of the velocity derived from the method of the composite Lyapunov function. By calculating the hydrodynamic coefficients of the Petrel-II hybrid-driven underwater glider, the simulation analysis has been conducted. In addition, the results of the field trials conducted in the South China Sea and the Danjiangkou Reservoir of China have been presented to illustrate the validity of the analysis and simulations.and to show the feasibility of the method of the composite Lyapunov function which verifies the stability of the Petrel-II hybrid-driven underwater glider.