期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Relationships between Some <i>k</i>-Fibonacci Sequences
1
作者 Sergio Falcon 《Applied Mathematics》 2014年第15期2226-2234,共9页
In this paper, we will see that some k?-Fibonacci sequences are related to the classical Fibonacci sequence of such way that we can express the terms of a k -Fibonacci sequence in function of some terms of the classic... In this paper, we will see that some k?-Fibonacci sequences are related to the classical Fibonacci sequence of such way that we can express the terms of a k -Fibonacci sequence in function of some terms of the classical Fibonacci sequence. And the formulas will apply to any sequence of a certain set of k'?-Fibonacci sequences. Thus we find k -Fibonacci sequences relating to other k -Fibonacci sequences when?σ'k?is linearly dependent of?. 展开更多
关键词 fibonacci and lucas numbers k -fibonacci numbers PASCAL TRIANGLE
下载PDF
Chebyshev Polynomials with Applications to Two-Dimensional Operators 被引量:1
2
作者 Alfred Wünsche 《Advances in Pure Mathematics》 2019年第12期990-1033,共44页
A new application of Chebyshev polynomials of second kind Un(x) to functions of two-dimensional operators is derived and discussed. It is related to the Hamilton-Cayley identity for operators or matrices which allows ... A new application of Chebyshev polynomials of second kind Un(x) to functions of two-dimensional operators is derived and discussed. It is related to the Hamilton-Cayley identity for operators or matrices which allows to reduce powers and smooth functions of them to superpositions of the first N-1 powers of the considered operator in N-dimensional case. The method leads in two-dimensional case first to the recurrence relations for Chebyshev polynomials and due to initial conditions to the application of Chebyshev polynomials of second kind Un(x). Furthermore, a new general class of Generating functions for Chebyshev polynomials of first and second kind Un(x) comprising the known Generating function as special cases is constructed by means of a derived identity for operator functions f(A) of a general two-dimensional operator A. The basic results are Formulas (9.5) and (9.6) which are then specialized for different examples of functions f(x). The generalization of the theory for three-dimensional operators is started to attack and a partial problem connected with the eigenvalue problem and the Hamilton-Cayley identity is solved in an Appendix. A physical application of Chebyshev polynomials to a problem of relativistic kinematics of a uniformly accelerated system is solved. All operator calculations are made in coordinate-invariant form. 展开更多
关键词 HYPERGEOMETRIC Function JACOBI POLYNOMIALS Ultraspherical POLYNOMIALS Chebyshev POLYNOMIALS LEGENDRE POLYNOMIALS Hamilton-Cayley Identity Generating Functions fibonacci and lucas numbers Special LORENTZ Transformations Coordinate-Invariant Methods
下载PDF
Fibonacci与Lucas数的一个求和公式 被引量:2
3
作者 刘小宁 《武汉工程职业技术学院学报》 2014年第3期94-94,98,共2页
提出并证明了Fibonacci与Lucas数的一个求和公式。
关键词 Fibo nacci与lucas 求和 公式
下载PDF
广义Fibonacci矩阵和广义Fibonacci数的矩阵表示 被引量:1
4
作者 郑德印 《淮北煤师院学报(自然科学版)》 2001年第3期12-18,共7页
二阶矩阵 M=和它的整数幂 Mn满足广义 Fibonacci型递推关系。对整数 n, Mn=,其中 Un=Wn(0,1;p,q)为广义 Fibonacci数。通过对基本矩阵等式的精巧处理 ,重新得到和扩展了包含广义 Fibonacci数 Un的著名关系式。用 Mn也给出了 Un的矩阵... 二阶矩阵 M=和它的整数幂 Mn满足广义 Fibonacci型递推关系。对整数 n, Mn=,其中 Un=Wn(0,1;p,q)为广义 Fibonacci数。通过对基本矩阵等式的精巧处理 ,重新得到和扩展了包含广义 Fibonacci数 Un的著名关系式。用 Mn也给出了 Un的矩阵表示。另外,通过矩阵 X=(其中,Δ =p2- 4q)的类似研究,得到广义 Lucas数 Vn=Wn(2,p;p,q)的相应结果以及 Un和 Vn之间的一些关系式。 展开更多
关键词 矩阵表示 矩阵关系 广义fibonacci 广义Fibonacei矩阵 广义lucas 递推关系
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部