In this paper, we will see that some k?-Fibonacci sequences are related to the classical Fibonacci sequence of such way that we can express the terms of a k -Fibonacci sequence in function of some terms of the classic...In this paper, we will see that some k?-Fibonacci sequences are related to the classical Fibonacci sequence of such way that we can express the terms of a k -Fibonacci sequence in function of some terms of the classical Fibonacci sequence. And the formulas will apply to any sequence of a certain set of k'?-Fibonacci sequences. Thus we find k -Fibonacci sequences relating to other k -Fibonacci sequences when?σ'k?is linearly dependent of?.展开更多
A new application of Chebyshev polynomials of second kind Un(x) to functions of two-dimensional operators is derived and discussed. It is related to the Hamilton-Cayley identity for operators or matrices which allows ...A new application of Chebyshev polynomials of second kind Un(x) to functions of two-dimensional operators is derived and discussed. It is related to the Hamilton-Cayley identity for operators or matrices which allows to reduce powers and smooth functions of them to superpositions of the first N-1 powers of the considered operator in N-dimensional case. The method leads in two-dimensional case first to the recurrence relations for Chebyshev polynomials and due to initial conditions to the application of Chebyshev polynomials of second kind Un(x). Furthermore, a new general class of Generating functions for Chebyshev polynomials of first and second kind Un(x) comprising the known Generating function as special cases is constructed by means of a derived identity for operator functions f(A) of a general two-dimensional operator A. The basic results are Formulas (9.5) and (9.6) which are then specialized for different examples of functions f(x). The generalization of the theory for three-dimensional operators is started to attack and a partial problem connected with the eigenvalue problem and the Hamilton-Cayley identity is solved in an Appendix. A physical application of Chebyshev polynomials to a problem of relativistic kinematics of a uniformly accelerated system is solved. All operator calculations are made in coordinate-invariant form.展开更多
文摘In this paper, we will see that some k?-Fibonacci sequences are related to the classical Fibonacci sequence of such way that we can express the terms of a k -Fibonacci sequence in function of some terms of the classical Fibonacci sequence. And the formulas will apply to any sequence of a certain set of k'?-Fibonacci sequences. Thus we find k -Fibonacci sequences relating to other k -Fibonacci sequences when?σ'k?is linearly dependent of?.
文摘A new application of Chebyshev polynomials of second kind Un(x) to functions of two-dimensional operators is derived and discussed. It is related to the Hamilton-Cayley identity for operators or matrices which allows to reduce powers and smooth functions of them to superpositions of the first N-1 powers of the considered operator in N-dimensional case. The method leads in two-dimensional case first to the recurrence relations for Chebyshev polynomials and due to initial conditions to the application of Chebyshev polynomials of second kind Un(x). Furthermore, a new general class of Generating functions for Chebyshev polynomials of first and second kind Un(x) comprising the known Generating function as special cases is constructed by means of a derived identity for operator functions f(A) of a general two-dimensional operator A. The basic results are Formulas (9.5) and (9.6) which are then specialized for different examples of functions f(x). The generalization of the theory for three-dimensional operators is started to attack and a partial problem connected with the eigenvalue problem and the Hamilton-Cayley identity is solved in an Appendix. A physical application of Chebyshev polynomials to a problem of relativistic kinematics of a uniformly accelerated system is solved. All operator calculations are made in coordinate-invariant form.