Quantum secure direct communication(QSDC) is an important quantum communication branch, which realizes the secure information transmission directly without encryption and decryption processes.Recently, two table-top e...Quantum secure direct communication(QSDC) is an important quantum communication branch, which realizes the secure information transmission directly without encryption and decryption processes.Recently, two table-top experiments have demonstrated the principle of QSDC. Here, we report the first long-distance QSDC experiment, including the security test, information encoding, fiber transmission and decoding. After the fiber transmission of 0.5 km, quantum state fidelities of the two polarization entangled Bell states are 91% and 88%, respectively, which are used for information coding. We theoretically analyze the performance of the QSDC system based on current optical communication technologies,showing that QSDC over fiber links of several tens kilometers could be expected. It demonstrates the potential of long-distance QSDC and supports its future applications on quantum communication networks.展开更多
VARIOUS small inorganic solid grain catalysts, alloys and films consisting of various nano-size particles were prepared by chemical methods. The study of catalytic properties of nanostructured materials integrated mat...VARIOUS small inorganic solid grain catalysts, alloys and films consisting of various nano-size particles were prepared by chemical methods. The study of catalytic properties of nanostructured materials integrated material physics with chemistry, which promoted the development of materials science.展开更多
基金supported by National Key R&D Program of China (2017YFA0303700)the National Basic Research Program of China (2013CB328700)+1 种基金the National Natural Science Foundation of China(61575102, 11474168 and 61621064)the Tsinghua University Initiative Scientific Research Program
文摘Quantum secure direct communication(QSDC) is an important quantum communication branch, which realizes the secure information transmission directly without encryption and decryption processes.Recently, two table-top experiments have demonstrated the principle of QSDC. Here, we report the first long-distance QSDC experiment, including the security test, information encoding, fiber transmission and decoding. After the fiber transmission of 0.5 km, quantum state fidelities of the two polarization entangled Bell states are 91% and 88%, respectively, which are used for information coding. We theoretically analyze the performance of the QSDC system based on current optical communication technologies,showing that QSDC over fiber links of several tens kilometers could be expected. It demonstrates the potential of long-distance QSDC and supports its future applications on quantum communication networks.
文摘VARIOUS small inorganic solid grain catalysts, alloys and films consisting of various nano-size particles were prepared by chemical methods. The study of catalytic properties of nanostructured materials integrated material physics with chemistry, which promoted the development of materials science.