根据甲烷气体的吸收光谱 ,研究了用 L ED作光源的差分吸收式光纤甲烷气体传感器。选择两个同型号 L ED光源作为差分吸收信号 ,光源驱动器自动实行交替斩波。建立了气体浓度差分吸收的数学模型 ,给出了甲烷气体浓度的测量结果。实验表明...根据甲烷气体的吸收光谱 ,研究了用 L ED作光源的差分吸收式光纤甲烷气体传感器。选择两个同型号 L ED光源作为差分吸收信号 ,光源驱动器自动实行交替斩波。建立了气体浓度差分吸收的数学模型 ,给出了甲烷气体浓度的测量结果。实验表明该仪器的测量灵敏度达到 2× 10 - 4。展开更多
Many theoretical studies have been developed to study the spectral response of a fiber Bragg grating (FBG) under non-uniform strain distribution along the length of FBG in recent years. However, almost no experiments ...Many theoretical studies have been developed to study the spectral response of a fiber Bragg grating (FBG) under non-uniform strain distribution along the length of FBG in recent years. However, almost no experiments were designed to obtain the evolution of the spectrum when a FBG is subjected to non-uniform strain. In this paper, the spectral responses of a FBG under non-uniform strain distributions are given and a numerical simulation based on the Runge-Kutta method is introduced to investigate the responses of the FBG under some typical non-uniform transverse strain fields, including both linear strain gradient and quadratic strain field. Experiment is carried out by using loads applied at different locations near the FBG. Good agreements between experimental results and numerical simulations are obtained.展开更多
Distributed fiber sensing possesses the unique ability to measure the distributed profile of an environmental quantity along many tens of kilometers with spatial resolutions in the meter or even centimeter scale.This ...Distributed fiber sensing possesses the unique ability to measure the distributed profile of an environmental quantity along many tens of kilometers with spatial resolutions in the meter or even centimeter scale.This feature enables distributed sensors to provide a large number of resolved points using a single optical fiber.However,in current systems,this number has remained constrained to a few hundreds of thousands due to the finite signal-to-noise ratio(SNR)of the measurements,which imposes significant challenges in the development of more performing sensors.Here,we propose and experimentally demonstrate an ultimately optimized distributed fiber sensor capable of resolving 2100000 independent points,which corresponds to a one-orderof-magnitude improvement compared to the state-of-the-art.Using a Brillouin distributed fiber sensor based on phase-modulation correlation-domain analysis combined with temporal gating of the pump and time-domain acquisition,a spatial resolution of 8.3 mm is demonstrated over a distance of 17.5 km.The sensor design addresses the most relevant factors impacting the SNR and the performance of medium-to-long range sensors as well as of sub-meter spatial resolution schemes.This step record in the number of resolved points could be reached due to two theoretical models proposed and experimentally validated in this study:one model describes the spatial resolution of the system and its relation with the sampling interval,and the other describes the amplitude response of the sensor,providing an accurate estimation of the SNR of the measurements.展开更多
基金supported by the National High Technology Research and Development Program of China (No.2007AA03Z117)the Key Program of National Natural Science Foundation of China (No.50830201)
文摘Many theoretical studies have been developed to study the spectral response of a fiber Bragg grating (FBG) under non-uniform strain distribution along the length of FBG in recent years. However, almost no experiments were designed to obtain the evolution of the spectrum when a FBG is subjected to non-uniform strain. In this paper, the spectral responses of a FBG under non-uniform strain distributions are given and a numerical simulation based on the Runge-Kutta method is introduced to investigate the responses of the FBG under some typical non-uniform transverse strain fields, including both linear strain gradient and quadratic strain field. Experiment is carried out by using loads applied at different locations near the FBG. Good agreements between experimental results and numerical simulations are obtained.
基金supported by the Swiss National Science Foundation through the project 200021-134546the Swiss State Secretariat for Education,Research and Innovation(SERI)through the project COST C10.0093.
文摘Distributed fiber sensing possesses the unique ability to measure the distributed profile of an environmental quantity along many tens of kilometers with spatial resolutions in the meter or even centimeter scale.This feature enables distributed sensors to provide a large number of resolved points using a single optical fiber.However,in current systems,this number has remained constrained to a few hundreds of thousands due to the finite signal-to-noise ratio(SNR)of the measurements,which imposes significant challenges in the development of more performing sensors.Here,we propose and experimentally demonstrate an ultimately optimized distributed fiber sensor capable of resolving 2100000 independent points,which corresponds to a one-orderof-magnitude improvement compared to the state-of-the-art.Using a Brillouin distributed fiber sensor based on phase-modulation correlation-domain analysis combined with temporal gating of the pump and time-domain acquisition,a spatial resolution of 8.3 mm is demonstrated over a distance of 17.5 km.The sensor design addresses the most relevant factors impacting the SNR and the performance of medium-to-long range sensors as well as of sub-meter spatial resolution schemes.This step record in the number of resolved points could be reached due to two theoretical models proposed and experimentally validated in this study:one model describes the spatial resolution of the system and its relation with the sampling interval,and the other describes the amplitude response of the sensor,providing an accurate estimation of the SNR of the measurements.