期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
增强提示学习的少样本文本分类方法 被引量:2
1
作者 李睿凡 魏志宇 +2 位作者 范元涛 叶书勤 张光卫 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期1-12,共12页
针对少样本文本分类任务,提出提示学习增强的分类算法(EPL4FTC)。该算法将文本分类任务转换成基于自然语言推理的提示学习形式,在利用预训练语言模型先验知识的基础上实现隐式数据增强,并通过两种粒度的损失进行优化。为捕获下游任务中... 针对少样本文本分类任务,提出提示学习增强的分类算法(EPL4FTC)。该算法将文本分类任务转换成基于自然语言推理的提示学习形式,在利用预训练语言模型先验知识的基础上实现隐式数据增强,并通过两种粒度的损失进行优化。为捕获下游任务中含有的类别信息,采用三元组损失联合优化方法,并引入掩码语言模型任务作为正则项,提升模型的泛化能力。在公开的4个中文文本和3个英文文本分类数据集上进行实验评估,结果表明EPL4FTC方法的准确度明显优于所对比的基线方法。 展开更多
关键词 预训练语言模型 少样本学习 文本分类 提示学习 三元组损失
下载PDF
基于提示学习的小样本文本分类方法 被引量:4
2
作者 于碧辉 蔡兴业 魏靖烜 《计算机应用》 CSCD 北大核心 2023年第9期2735-2740,共6页
文本分类任务通常依赖足量的标注数据,针对低资源场景下的分类模型在小样本上的过拟合问题,提出一种基于提示学习的小样本文本分类方法BERT-P-Tuning。首先,利用预训练模型BERT(Bidirectional Encoder Representations from Transforme... 文本分类任务通常依赖足量的标注数据,针对低资源场景下的分类模型在小样本上的过拟合问题,提出一种基于提示学习的小样本文本分类方法BERT-P-Tuning。首先,利用预训练模型BERT(Bidirectional Encoder Representations from Transformers)在标注样本上学习到最优的提示模板;然后,在每条样本中补充提示模板和空缺,将文本分类任务转化为完形填空任务;最后,通过预测空缺位置概率最高的词并结合它与标签之间的映射关系得到最终的标签。在公开数据集FewCLUE上的短文本分类任务上进行实验,实验结果表明,所提方法相较于基于BERT微调的方法在评价指标上有显著提高。所提方法在二分类任务上的准确率与F1值分别提升了25.2和26.7个百分点,在多分类任务上的准确率与F1值分别提升了6.6和8.0个百分点。相较于手动构建模板的PET(Pattern Exploiting Training)方法,所提方法在两个任务上的准确率分别提升了2.9和2.8个百分点,F1值分别提升了4.4和4.2个百分点,验证了预训练模型应用在小样本任务的有效性。 展开更多
关键词 小样本学习 文本分类 预训练模型 提示学习 自适应模板
下载PDF
基于元学习的不平衡少样本情况下的文本分类研究 被引量:5
3
作者 熊伟 宫禹 《中文信息学报》 CSCD 北大核心 2022年第1期104-116,共13页
针对文本信息语义、语境迁移难问题,该文提出一种基于元学习与注意力机制模型的动态卷积神经网络改进方法。首先利用文本的底层分布特征进行跨类别分类,使文本信息具有更好的迁移性;其次使用注意力机制对传统的卷积网络进行改进,以提高... 针对文本信息语义、语境迁移难问题,该文提出一种基于元学习与注意力机制模型的动态卷积神经网络改进方法。首先利用文本的底层分布特征进行跨类别分类,使文本信息具有更好的迁移性;其次使用注意力机制对传统的卷积网络进行改进,以提高网络的特征提取能力,并根据原始数据集信息进行编码,生成平衡变量,降低由于数据不平衡所带来的影响;最后使用双层优化的方法使模型自动优化其网络参数。在通用文本分类数据集THUCNews实验结果表明,该文所提出的方法,在1-shot、5-shot情况下,准确率分别提升2.27%、3.26%;在IMDb数据集上,模型准确率分别提升3.28%、3.01%。 展开更多
关键词 元学习 少样本学习 文本分类 动态卷积 数据不平衡
下载PDF
基于知识增强和提示学习的小样本新闻主题分类方法 被引量:1
4
作者 余新言 曾诚 +2 位作者 王乾 何鹏 丁晓玉 《计算机应用》 CSCD 北大核心 2024年第6期1767-1774,共8页
基于预训练微调的分类方法通常需要大量带标注的数据,导致无法应用于小样本分类任务。因此,针对中文小样本新闻主题分类任务,提出一种基于知识增强和提示学习的分类方法KPL(Knowledge enhancement and Prompt Learning)。首先,利用预训... 基于预训练微调的分类方法通常需要大量带标注的数据,导致无法应用于小样本分类任务。因此,针对中文小样本新闻主题分类任务,提出一种基于知识增强和提示学习的分类方法KPL(Knowledge enhancement and Prompt Learning)。首先,利用预训练模型在训练集上学习最优的提示模板;其次,将提示模板与输入文本结合,使分类任务转化为完形填空任务;同时利用外部知识扩充标签词空间,丰富标签词的语义信息;最后,对预测的标签词与原始的标签进行映射。通过在THUCNews、SHNews和Toutiao这3个新闻数据集上进行随机采样,形成小样本训练集和验证集进行实验。实验结果表明,所提方法在上述数据集上的1-shot、5-shot、10-shot和20-shot任务上整体表现有所提升,尤其在1-shot任务上提升效果突出,与基线小样本分类方法相比,准确率分别提高了7.59、2.11和3.10个百分点以上,验证了KPL在小样本新闻主题分类任务上的有效性。 展开更多
关键词 新闻主题分类 提示学习 知识增强 小样本学习 文本分类
下载PDF
基于双通道图神经网络的小样本文本分类 被引量:5
5
作者 王阳刚 邱锡鹏 +2 位作者 黄萱菁 王一宁 李云辉 《中文信息学报》 CSCD 北大核心 2021年第7期89-97,108,共10页
小样本文本分类任务同时面临两个主要问题:(1)样本量少,易过拟合;(2)在元学习框架的任务形式下,监督信息被进一步稀疏化。近期工作中,利用图神经网络建模样本的全局信息表示(full context embedding)成为小样本学习领域中一种行之有效... 小样本文本分类任务同时面临两个主要问题:(1)样本量少,易过拟合;(2)在元学习框架的任务形式下,监督信息被进一步稀疏化。近期工作中,利用图神经网络建模样本的全局信息表示(full context embedding)成为小样本学习领域中一种行之有效的方法,但将其迁移至小样本文本分类任务,由于文本多噪声,且特征易混淆,图神经网络往往出现过度平滑问题(over-smoothing)。该文提出了一种双通道图神经网络,在建模样本的全局特征的同时,充分利用标签传播机制,通过共享两通道的信息传播矩阵使得监督信息有效约束了图神经网络迭代过程。与基线的图神经网络相比,该方法在FewRel数据集上平均取得了1.51%的准确率提升;在ARSC数据集上取得了11.1%的准确率提升。 展开更多
关键词 小样本学习 图神经网络 文本分类
下载PDF
比较任务修正少样本细粒度情感分类方法
6
作者 金旭 崔艳荣 +1 位作者 陈杰 陈佳力 《计算机工程与设计》 北大核心 2024年第11期3420-3426,共7页
针对主流少样本学习方法在细粒度情感分类任务中难以区分情感程度相似样本的问题,提出一种基于比较任务的少样本细粒度文本情感分类的修正方法。对于比较任务的训练阶段,构建训练集样本的正负样本并设计一套比较任务模板。在比较任务的... 针对主流少样本学习方法在细粒度情感分类任务中难以区分情感程度相似样本的问题,提出一种基于比较任务的少样本细粒度文本情感分类的修正方法。对于比较任务的训练阶段,构建训练集样本的正负样本并设计一套比较任务模板。在比较任务的预测阶段设计一种将测试集样本与训练集样本情感程度比较结果进行投票分类的方法。利用比较任务的结果对单句分类结果进行修正,取得更稳定的结果。在细粒度情感分类数据集SST5及Amazon Product数据集上进行实验,结果表明,修正方法相较于主流方法获得更优的性能与稳定性。 展开更多
关键词 细粒度 情感分类 少样本 比较任务 修正方法 自然语言处理 文本分类
下载PDF
基于文本图神经网络的小样本文本分类技术研究
7
作者 安相成 刘保柱 甘精伟 《河北科技大学学报》 CAS 北大核心 2024年第1期52-58,共7页
为了解决文本图神经网络小样本文本分类精度较差的问题,设计了基于文本图神经网络的原型网络,采用预训练语言模型,利用文本级图神经网络为每个输入文本构建图并共享全局参数,将文本图神经网络的结果作为原型网络的输入,对未标注文本进... 为了解决文本图神经网络小样本文本分类精度较差的问题,设计了基于文本图神经网络的原型网络,采用预训练语言模型,利用文本级图神经网络为每个输入文本构建图并共享全局参数,将文本图神经网络的结果作为原型网络的输入,对未标注文本进行分类,并验证新模型在多个文本分类数据集上的有效性。实验结果表明,与需要大量标注文档的监督学习方法相比,所采用的方法未标注文本的分类精度提高了1%~3%,在多个文本分类数据集上验证了新模型性能先进,内存占用更少。研究结果可为解决小样本文本分类问题提供参考。 展开更多
关键词 自然语言处理 小样本文本分类 预训练模型 图神经网络 原型网络
下载PDF
基于双向长效注意力特征表达的少样本文本分类模型研究 被引量:2
8
作者 徐彤彤 孙华志 +2 位作者 马春梅 姜丽芬 刘逸琛 《数据分析与知识发现》 CSSCI CSCD 北大核心 2020年第10期113-123,共11页
【目的】针对当前文本分类任务中存在的训练数据匮乏以及模型泛化性能低等问题,在少样本环境下研究文本分类问题,提出一种少样本文本分类模型。【方法】基于元学习中的分段训练机制将文本分类任务划分为多个子任务;为了捕捉每个子任务... 【目的】针对当前文本分类任务中存在的训练数据匮乏以及模型泛化性能低等问题,在少样本环境下研究文本分类问题,提出一种少样本文本分类模型。【方法】基于元学习中的分段训练机制将文本分类任务划分为多个子任务;为了捕捉每个子任务中文本的长效上下文信息,提出双向时间卷积网络;为了捕获辨别力更强的特征,联合双向时间卷积网络和注意力机制提出双向长效注意力网络;利用一种新的神经网络模型度量每个子任务中查询样本与支持集的相关性,从而实现少样本文本分类。【结果】在ARSC数据集上进行实验,实验结果表明,在少样本环境下,该模型的分类准确率高达86.80%,比现有先进的少样本文本分类模型ROBUSTTC-FSL和Induction-Network-Routing的准确率分别提高了3.68%和1.17%。【局限】仅针对短文本分类问题,对于篇幅较长的文本,其分类能力有限。【结论】双向长效注意力网络克服了训练数据匮乏问题且充分捕获文本的语义信息,有效提高了少样本文本分类性能。 展开更多
关键词 少样本文本分类 注意力机制 少样本学习 双向时间卷积网络
原文传递
改进路由机制的元学习少样本文本分类模型
9
作者 荆沁璐 冯林 +2 位作者 王旭 龚勋 胡议月 《小型微型计算机系统》 CSCD 北大核心 2023年第11期2392-2400,共9页
深度学习模型已在文本分类领域得到了广泛应用.然而,深度神经网络在处理少样本文本分类任务时其有效性易受噪声、同类样本点分布不均衡等问题的影响.为此,提出改进路由机制的元学习少样本文本分类模型.模型对胶囊网络的动态路由机制做... 深度学习模型已在文本分类领域得到了广泛应用.然而,深度神经网络在处理少样本文本分类任务时其有效性易受噪声、同类样本点分布不均衡等问题的影响.为此,提出改进路由机制的元学习少样本文本分类模型.模型对胶囊网络的动态路由机制做出两种改进,针对噪声干扰问题,提出基于交互信息的路由机制,捕获同类文本间的交互信息来引导模型加强重要特征,减弱噪声影响;针对文本样本点分布不均衡的问题,提出基于距离系数的路由机制,引入距离系数指导权重分配过程以更好地划分原型空间.然后,将二者学习到的类原型进行融合,以充分捕获少样本文本特征信息.实验结果表明,相对其它少样本文本分类任务的基线方法,该文模型具有更优的少样本文本预测能力,并且收敛速度更快. 展开更多
关键词 少样本文本分类 路由机制 元学习 深度学习 胶囊网络
下载PDF
基于双向注意力和类生成器的小样本文本分类
10
作者 王婷 朱小飞 唐顾 《小型微型计算机系统》 CSCD 北大核心 2023年第12期2744-2751,共8页
在小样本文本分类领域中,查询集和支持集的特征提取是影响分类结果的关键之一,但以往的研究大多忽略了两者之间存在匹配信息且在各自的信息提取中忽略了特征间的重要性程度不同,因此提出了一种新的小样本分类模型.模型结合GRU的全局信... 在小样本文本分类领域中,查询集和支持集的特征提取是影响分类结果的关键之一,但以往的研究大多忽略了两者之间存在匹配信息且在各自的信息提取中忽略了特征间的重要性程度不同,因此提出了一种新的小样本分类模型.模型结合GRU的全局信息提取能力和注意力机制的局部细节学习能力对文本特征进行建模,同时采用双向注意力机制来获取支持样本与查询样本间的交互信息,并创新性的提出“类生成器”用以区分同类样本间的不同重要性同时生成更具判别性的类别表示.此外,为了获得更为清晰的分类界限,还设计了一个原型感知的正则化项来优化原型学习.模型在2个小样本分类数据集上进行了实验,均取得了比目前最优基线模型更好的分类效果. 展开更多
关键词 小样本学习 度量网络 双向注意力 文本分类
下载PDF
利用概念化的少样本短文本分类研究 被引量:1
11
作者 沈炜域 刘奇飞 《情报探索》 2018年第12期5-9,共5页
[目的/意义]旨在为用户和管理者的短文本分类管理提供参考。[方法/过程]利用开放知识库完成词粒度的概念化,将CWE预训练得到的词嵌入与实例的概念化表示拼接合成文本表示,并利用相似度的计算预测待标注短文本的类别。[结果/结论]结果表... [目的/意义]旨在为用户和管理者的短文本分类管理提供参考。[方法/过程]利用开放知识库完成词粒度的概念化,将CWE预训练得到的词嵌入与实例的概念化表示拼接合成文本表示,并利用相似度的计算预测待标注短文本的类别。[结果/结论]结果表明了在少样本的情况下,该方法分类效果优于实验涉及的其他文本分类模型。 展开更多
关键词 少样本学习 词嵌入 概念化 文本分类
下载PDF
一种基于元学习的医疗文本分类模型
12
作者 赵楠 赵志桦 《计算技术与自动化》 2022年第4期98-102,共5页
医疗文本专业术语复杂,垂直领域训练样本不足,传统的分类方法不能满足现实需求,提出一种基于元学习的小样本文本分类模型提高医疗文本分类效率。该模型基于迁移学习思想,加入注意力机制赋予句子中的词语不同的权重,利用两个相互竞争的... 医疗文本专业术语复杂,垂直领域训练样本不足,传统的分类方法不能满足现实需求,提出一种基于元学习的小样本文本分类模型提高医疗文本分类效率。该模型基于迁移学习思想,加入注意力机制赋予句子中的词语不同的权重,利用两个相互竞争的神经网络分别扮演领域识别者和元知识生成者的角色,通过自适应性网络加强元学习对新数据集的适应性,最后使用岭回归获得数据集的分类。实验对比分析结果验证了该模型对一些公开文本数据集和医疗文本数据具有很好的分类效果。基于元学习的小样本文本分类模型可以成功地应用在医疗文本分类领域。 展开更多
关键词 元学习 小样本文本分类 注意力机制 医疗数据 领域自适应
下载PDF
基于异构图卷积网络的小样本短文本分类方法 被引量:11
13
作者 袁自勇 高曙 +1 位作者 曹姣 陈良臣 《计算机工程》 CAS CSCD 北大核心 2021年第12期87-94,共8页
针对小样本短文本分类过程中出现的语义稀疏与过拟合问题,在异构图卷积网络中利用双重注意力机制学习不同相邻节点的重要性和不同节点类型对当前节点的重要性,构建小样本短文本分类模型HGCN-RN。利用BTM主题模型在短文本数据集中提取主... 针对小样本短文本分类过程中出现的语义稀疏与过拟合问题,在异构图卷积网络中利用双重注意力机制学习不同相邻节点的重要性和不同节点类型对当前节点的重要性,构建小样本短文本分类模型HGCN-RN。利用BTM主题模型在短文本数据集中提取主题信息,构造一个集成实体和主题信息的短文本异构信息网络,用于解决短文本语义稀疏问题。在此基础上,构造基于随机去邻法和双重注意力机制的异构图卷积网络,提取短文本异构信息网络中的语义信息,同时利用随机去邻法进行数据增强,用于缓解过拟合问题。在3个短文本数据集上的实验结果表明,与LSTM、Text GCN、HGAT等基准模型相比,该模型在每个类别只有10个标记样本的情况下仍能达到最优性能。 展开更多
关键词 小样本短文本分类 异构图卷积网络 短文本异构信息网络 BTM主题模型 过拟合
下载PDF
少样本文本分类的多任务原型网络 被引量:4
14
作者 于俊杰 程华 房一泉 《计算机应用研究》 CSCD 北大核心 2022年第5期1368-1373,共6页
少样本文本分类中,原型网络对语义利用不足、可迁移特征挖掘不够,导致模型泛化能力不强,在新任务空间中分类性能不佳。从模型结构、编码网络、度量网络等角度提高模型泛化性,提出多任务原型网络(multiple-task prototypical network,MT... 少样本文本分类中,原型网络对语义利用不足、可迁移特征挖掘不够,导致模型泛化能力不强,在新任务空间中分类性能不佳。从模型结构、编码网络、度量网络等角度提高模型泛化性,提出多任务原型网络(multiple-task prototypical network,MTPN)。结构上,基于原型网络度量任务增加辅助分类任务约束训练目标,提高了模型的语义特征抽取能力,利用多任务联合训练,获得与辅助任务更相关的语义表示。针对编码网络,提出LF-Transformer编码器,使用层级注意力融合底层通用编码信息,提升特征的可迁移性。度量网络使用基于BiGRU的类原型生成器,使类原型更具代表性,距离度量更加准确。实验表明,MTPN在少样本文本情感分类任务中取得了91.62%的准确率,比现有最佳模型提升了3.5%以上;在新领域的情感评论中,基于五条参考样本,模型对查询样本可获得超过90%的分类准确率。 展开更多
关键词 少样本学习 原型网络 文本分类 多任务学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部