With the fast development of the power electronics,dielectric materials with high energy-storage density,low loss,and good temperature stability are eagerly desired for the potential application in advanced pulsed cap...With the fast development of the power electronics,dielectric materials with high energy-storage density,low loss,and good temperature stability are eagerly desired for the potential application in advanced pulsed capacitors.Based on the physical principals,the materials with higher saturated polarization,smaller remnant polarization,and higher electrical breakdown field are the most promising candidates.According to this rule,so far,four kinds of materials,namely antiferroelectrics,dielectric glass-ceramics,relaxor ferroelectric and polymer-based ferroelectrics are thought to be more likely used in next-generation pulsed capacitors,and have been widely studied.Thus,this review serves to give an overall summary on the state-of-the-art progress on electric energy-storage performance in these materials.Moreover,some general future prospects are also provided from the existed theoretical and experimental results in this work,in order to propel their application in practice.展开更多
Metasurfaces, two-dimensional equivalents of metamaterials, are engineered surfaces consisting of deep subwavelength features that have full control of the electromagnetic waves. Metasurfaces are not only being applie...Metasurfaces, two-dimensional equivalents of metamaterials, are engineered surfaces consisting of deep subwavelength features that have full control of the electromagnetic waves. Metasurfaces are not only being applied to the current de-vices throughout the electromagnetic spectrum from microwave to optics but also inspiring many new thrilling applica-tions such as programmable on-demand optics and photonics in future. In order to overcome the limits imposed by pas-sive metasurfaces, extensive researches have been put on utilizing different materials and mechanisms to design active metasurfaces. In this paper, we review the recent progress in tunable and reconfigurable metasurfaces and metadevicesthrough the different active materials deployed together with the different control mechanisms including electrical, ther-mal, optical, mechanical, and magnetic, and provide the perspective for their future development for applications.展开更多
The recent review for the Restriction of Hazardous Substances Directive(RoHS)by the expert committee,appointed by the European Union,stated that the replacement of PZT“…may be scientifically and technologically prac...The recent review for the Restriction of Hazardous Substances Directive(RoHS)by the expert committee,appointed by the European Union,stated that the replacement of PZT“…may be scientifically and technologically practical to a certain degree…”,although replacement“…is scientifically and technically still impractical in the majority of applications.”Thus,two decades of sustained research and development may be approaching fruition,at first limited to a minority of applications.Therefore,it is of paramount importance to assess the viability of lead-free piezoceramics over a broad range of application-relevant properties.These are identified and discussed in turn:1.Cost,2.Reproducibility,3.Mechanical and Thermal Properties,4.Electrical Conductivity,and 5.Lifetime.It is suggested that the worldwide efforts into the development of lead-free piezoceramics now require a broader perspective to bring the work to the next stage of development by supporting implementation into real devices.Guidelines about pertinent research requirements into a wide range of secondary properties,measurement techniques,and salient literature are provided.展开更多
Relaxor ferroelectric single crystals PMNT with the size of φ40 mm×80 mm have been grown by a modified Bridgman method and their ferroelectric and piezoelectric properties have been characterized. The properties...Relaxor ferroelectric single crystals PMNT with the size of φ40 mm×80 mm have been grown by a modified Bridgman method and their ferroelectric and piezoelectric properties have been characterized. The properties varied with the compositions and cut types. On the (001) cut, PMNT76/24 single crystals exhibited a dielectric constant ε of about 3 400, a dielectric loss of tanδ 【0.7%, a piezoelectric constant d33 of 980 pC/N, an electromechanical coupling factor kt of 0.55 and Tc of about 110℃. whereas the properties of PMNT67/33 single crystals on (001) cut were betler: e of about 5 300, tan5 【0.6%, d33 up to 3 000 pC/N, kt 0.64, K33 0.93 and Tc of about 150℃. The piezoelectric properties on other cuts such as (110) and (111) were much lower than those on the (001) cut. The rhombohedral PMNT crystals grown by this method showed more excellent piezoelectric properties than those grown by high temperature solution method and higher value of kt than the rhombohedral PZNT single crystals. it has also展开更多
Emulation of advanced synaptic functions of the human brain with electronic devices contributes an important step toward constructing high‐efficiency neuromorphic systems.Ferroelectric materials are promising candida...Emulation of advanced synaptic functions of the human brain with electronic devices contributes an important step toward constructing high‐efficiency neuromorphic systems.Ferroelectric materials are promising candidates as synaptic weight elements in neural network hardware due to their controllable polarization states.However,the increased depolarization field at the na-noscale and the complex fabrication process of the traditional ferroelectric materials hamper the development of high‐density,low‐power,and highly sensitive synaptic devices.Here,we report the implementation of two‐dimensional(2D)ferroelectricα‐In_(2)Se_(3)as an active channel material to emulate typical synaptic functions.Theα‐In_(2)Se_(3)‐based synaptic device fea-tures multimode operations,enabled by the coupled ferroelectric polarization under various voltage pulses applied at both drain and gate terminals.Moreover,the energy consumption can be reduced to~1 pJ by using high‐κdielectric(Al2O3).The successful control of ferroelectric polarizations inα‐In_(2)Se_(3)and its application in artificial synapses are expected to inspire the implementation of 2D ferroelectric materials for future neuromorphic systems.展开更多
(Ba0.3Sr0.7)x(Bi0.5Na0.5)1-xTiO3(BSxBNT,x=0.3–V0.8)ceramics were prepared to investigate their structure,dielectric and ferroelectric properties.BSxBNT ceramics possess pure perovskite structure accompanied from a te...(Ba0.3Sr0.7)x(Bi0.5Na0.5)1-xTiO3(BSxBNT,x=0.3–V0.8)ceramics were prepared to investigate their structure,dielectric and ferroelectric properties.BSxBNT ceramics possess pure perovskite structure accompanied from a tetragonal symmetry to pseudo-cubic one with the increase of x value,being confirmed by X-ray diffraction(XRD)and Raman results.The Tm corresponding to a temperature in the vicinity of maximum dielectric constant gradually decreases from 110℃(x=0.3)to-45℃(x=0.8),across Tm=36℃(x=0.5)with a maximum dielectric constant(ɛr=5920@1 kHz)around room temperature.The saturated polarization Ps gradually while the remnant polarization Pr sharply decreases with the increase of x value,making the P-E hysteresis loop of BSxBNT ceramics goes slim.A maximum difference between Ps and Pr(Ps-Pr)is obtained for BSxBNT ceramics with x=0.5,at which a high recoverable energy density(Wrec=1.04 J/cm3)is achieved under an applied electric field of 100 kV/cm with an efficiency ofη=77%.Meanwhile,the varied temperature P-E loops,fatigue measurements,and electric breakdown characteristics for the sample with x=0.5 indicate that it is promising for pulsed power energy storage capacitor candidate materials.展开更多
基金financial support from the National Natural Science Foundation of China under grant No.51002071the Program for New Century Excellent Talents in Universitythe Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region.
文摘With the fast development of the power electronics,dielectric materials with high energy-storage density,low loss,and good temperature stability are eagerly desired for the potential application in advanced pulsed capacitors.Based on the physical principals,the materials with higher saturated polarization,smaller remnant polarization,and higher electrical breakdown field are the most promising candidates.According to this rule,so far,four kinds of materials,namely antiferroelectrics,dielectric glass-ceramics,relaxor ferroelectric and polymer-based ferroelectrics are thought to be more likely used in next-generation pulsed capacitors,and have been widely studied.Thus,this review serves to give an overall summary on the state-of-the-art progress on electric energy-storage performance in these materials.Moreover,some general future prospects are also provided from the existed theoretical and experimental results in this work,in order to propel their application in practice.
文摘Metasurfaces, two-dimensional equivalents of metamaterials, are engineered surfaces consisting of deep subwavelength features that have full control of the electromagnetic waves. Metasurfaces are not only being applied to the current de-vices throughout the electromagnetic spectrum from microwave to optics but also inspiring many new thrilling applica-tions such as programmable on-demand optics and photonics in future. In order to overcome the limits imposed by pas-sive metasurfaces, extensive researches have been put on utilizing different materials and mechanisms to design active metasurfaces. In this paper, we review the recent progress in tunable and reconfigurable metasurfaces and metadevicesthrough the different active materials deployed together with the different control mechanisms including electrical, ther-mal, optical, mechanical, and magnetic, and provide the perspective for their future development for applications.
文摘The recent review for the Restriction of Hazardous Substances Directive(RoHS)by the expert committee,appointed by the European Union,stated that the replacement of PZT“…may be scientifically and technologically practical to a certain degree…”,although replacement“…is scientifically and technically still impractical in the majority of applications.”Thus,two decades of sustained research and development may be approaching fruition,at first limited to a minority of applications.Therefore,it is of paramount importance to assess the viability of lead-free piezoceramics over a broad range of application-relevant properties.These are identified and discussed in turn:1.Cost,2.Reproducibility,3.Mechanical and Thermal Properties,4.Electrical Conductivity,and 5.Lifetime.It is suggested that the worldwide efforts into the development of lead-free piezoceramics now require a broader perspective to bring the work to the next stage of development by supporting implementation into real devices.Guidelines about pertinent research requirements into a wide range of secondary properties,measurement techniques,and salient literature are provided.
文摘Relaxor ferroelectric single crystals PMNT with the size of φ40 mm×80 mm have been grown by a modified Bridgman method and their ferroelectric and piezoelectric properties have been characterized. The properties varied with the compositions and cut types. On the (001) cut, PMNT76/24 single crystals exhibited a dielectric constant ε of about 3 400, a dielectric loss of tanδ 【0.7%, a piezoelectric constant d33 of 980 pC/N, an electromechanical coupling factor kt of 0.55 and Tc of about 110℃. whereas the properties of PMNT67/33 single crystals on (001) cut were betler: e of about 5 300, tan5 【0.6%, d33 up to 3 000 pC/N, kt 0.64, K33 0.93 and Tc of about 150℃. The piezoelectric properties on other cuts such as (110) and (111) were much lower than those on the (001) cut. The rhombohedral PMNT crystals grown by this method showed more excellent piezoelectric properties than those grown by high temperature solution method and higher value of kt than the rhombohedral PZNT single crystals. it has also
基金Ministry of Education—Singapore,Grant/Award Number:MOE‐2019‐T2‐1‐002National Natural Science Foundation of China,Grant/Award Numbers:21872100,U2032147Agency for Science,Technology and Research,Grant/Award Numbers:A1938c0035,A20G9b0135。
文摘Emulation of advanced synaptic functions of the human brain with electronic devices contributes an important step toward constructing high‐efficiency neuromorphic systems.Ferroelectric materials are promising candidates as synaptic weight elements in neural network hardware due to their controllable polarization states.However,the increased depolarization field at the na-noscale and the complex fabrication process of the traditional ferroelectric materials hamper the development of high‐density,low‐power,and highly sensitive synaptic devices.Here,we report the implementation of two‐dimensional(2D)ferroelectricα‐In_(2)Se_(3)as an active channel material to emulate typical synaptic functions.Theα‐In_(2)Se_(3)‐based synaptic device fea-tures multimode operations,enabled by the coupled ferroelectric polarization under various voltage pulses applied at both drain and gate terminals.Moreover,the energy consumption can be reduced to~1 pJ by using high‐κdielectric(Al2O3).The successful control of ferroelectric polarizations inα‐In_(2)Se_(3)and its application in artificial synapses are expected to inspire the implementation of 2D ferroelectric materials for future neuromorphic systems.
基金This work was financially supported by National Natural Science Foundation of China(51767010)Science&Technology Key Research Project of Jiangxi Provincial Education Department(GJJ170760)Graduate Student Innovation Fund of Jiangxi Province(YC2018-S295).
文摘(Ba0.3Sr0.7)x(Bi0.5Na0.5)1-xTiO3(BSxBNT,x=0.3–V0.8)ceramics were prepared to investigate their structure,dielectric and ferroelectric properties.BSxBNT ceramics possess pure perovskite structure accompanied from a tetragonal symmetry to pseudo-cubic one with the increase of x value,being confirmed by X-ray diffraction(XRD)and Raman results.The Tm corresponding to a temperature in the vicinity of maximum dielectric constant gradually decreases from 110℃(x=0.3)to-45℃(x=0.8),across Tm=36℃(x=0.5)with a maximum dielectric constant(ɛr=5920@1 kHz)around room temperature.The saturated polarization Ps gradually while the remnant polarization Pr sharply decreases with the increase of x value,making the P-E hysteresis loop of BSxBNT ceramics goes slim.A maximum difference between Ps and Pr(Ps-Pr)is obtained for BSxBNT ceramics with x=0.5,at which a high recoverable energy density(Wrec=1.04 J/cm3)is achieved under an applied electric field of 100 kV/cm with an efficiency ofη=77%.Meanwhile,the varied temperature P-E loops,fatigue measurements,and electric breakdown characteristics for the sample with x=0.5 indicate that it is promising for pulsed power energy storage capacitor candidate materials.