The potential of microbial mediated iron plaque reduction, and associated arsenic (As) mobility were examined by iron reducing bacteria enriched from As contaminated paddy soil. To our knowledge, this is the first t...The potential of microbial mediated iron plaque reduction, and associated arsenic (As) mobility were examined by iron reducing bacteria enriched from As contaminated paddy soil. To our knowledge, this is the first time to report the impact of microbial iron plaque reduction on As mobility. Iron reduction occurred during the inoculation of iron reducing enrichment culture in the treatments with iron plaque and ferrihydrite as the electron acceptors, respectively. The Fe(II) concentration with the treatment of anthraquinone-2, 6-disulfonic acid (AQDS) and iron reducing bacteria increased much faster than the control. Arsenic released from iron plaque with the iron reduction, and a significant correlation between Fe(II) and total As in culture was observed. However, compared with control, the increasing rate of As was inhibited by iron reducing bacteria especially in the presence of AQDS. In addition, the concentrations of As(III) and As(V) in abiotic treatments were higher than those in the biotic treatments at day 30. These results indicated that both microbial and chemical reductions of iron plaque caused As release from iron plaque to aqueous phase, however, microbial iron reduction induced the formation of more crystalline iron minerals, leading to As sequestration. In addition, the presence of AQDS in solution can accelerate the iron reduction, the As release from iron plaque and subsequently the As retention in the crystalline iron mineral. Thus, our results suggested that it is possible to remediate As contaminated soils by utilizing iron reducing bacteria and AQDS.展开更多
The rapid development of nanoscience and nanotechnology, with thousands types of nanomaterials being produced, will lead to various environmental impacts. Thus,understanding the behaviors and fate of these nanomateria...The rapid development of nanoscience and nanotechnology, with thousands types of nanomaterials being produced, will lead to various environmental impacts. Thus,understanding the behaviors and fate of these nanomaterials is essential. This study focused on the interaction between polyhydroxy fullerenes(PHF) and ferrihydrite(Fh), a widespread iron(oxyhydr)oxide nanomineral and geosorbent. Our results showed that PHF were effectively adsorbed by Fh. The adsorption isotherm fitted the D-R model well, with an adsorption capacity of 67.1 mg/g. The adsorption mean free energy of 10.72 k J/mol suggested that PHF were chemisorbed on Fh. An increase in the solution p H and a decrease of the Fh surface zeta potential were observed after the adsorption of PHF on Fh; moreover, increasing initial solution p H led to a reduction of adsorption. The Fourier transform infrared spectra detected a red shift of C–O stretching from 1075 to 1062 cm-1 and a decrease of Fe–O bending, implying the interaction between PHF oxygenic functional groups and Fh surface hydroxyls. On the other hand, PHF affected the aggregation and reactivity of Fh by changing its surface physicochemical properties. Aggregation of PHF and Fh with individual particle sizes increasing from 2 nm to larger than 5 nm was measured by atomic force microscopy. The uniform distribution of C and Fe suggested that the aggregates of Fh were possibly bridged by PHF. Our results indicated that the interaction between PHF and Fh could evidently influence the migration of PHF, as well as the aggregation and reactivity of Fh.展开更多
Microbially mediated bioreduction of iron oxyhydroxide plays an important role in the biogeochemical cycle of iron.Geobacter sulfurreducens is a representative dissimilatory ironreducing bacterium that assembles elect...Microbially mediated bioreduction of iron oxyhydroxide plays an important role in the biogeochemical cycle of iron.Geobacter sulfurreducens is a representative dissimilatory ironreducing bacterium that assembles electrically conductive pili and cytochromes.The impact of supplementation withγ-Fe_2O_3 nanoparticles(NPs)(0.2 and 0.6 g)on the G.sulfurreducens-mediated reduction of ferrihydrite was investigated.In the overall performance of microbial ferrihydrite reduction mediated byγ-Fe_2O_3 NPs,stronger reduction was observed in the presence of direct contact withγ-Fe_2O_3 NPs than with indirect contact.Compared to the production of Fe(Ⅱ)derived from biotic modification with ferrihydrite alone,increases greater than 1.6-and 1.4-fold in the production of Fe(Ⅱ)were detected in the biotic modifications in which direct contact with 0.2 g and 0.6 gγ-Fe_2O_3 NPs,respectively,occurred.X-ray diffraction analysis indicated that magnetite was a unique representative iron mineral in ferrihydrite when active G.sulfurreducens cells were in direct contact withγ-Fe_2O_3 NPs.Because of the sorption of biogenic Fe(Ⅱ)ontoγ-Fe_2O_3 NPs instead of ferrihydrite,the addition ofγ-Fe_2O_3 NPs could also contribute to increased duration of ferrihydrite reduction by preventing ferrihydrite surface passivation.Additionally,electron microscopy analysis confirmed that the direct addition ofγ-Fe_2O_3 NPs stimulated the electrically conductive pili and cytochromes to stretch,facilitating long-range electron transfer between the cells and ferrihydrite.The obtained findings provide a more comprehensive understanding of the effects of iron oxide NPs on soil biogeochemistry.展开更多
The coexistence of cadmium(Cd(Ⅱ))and arsenate(As(Ⅴ))pollution has long been an environmental problem.Biochar,a porous carbonaceous material with tunable functionality,has been used for the remediation of contaminate...The coexistence of cadmium(Cd(Ⅱ))and arsenate(As(Ⅴ))pollution has long been an environmental problem.Biochar,a porous carbonaceous material with tunable functionality,has been used for the remediation of contaminated soils.However,it is still challenging for the dynamic quantification and mechanistic understanding of the simultaneous sequestration of multi-metals in biochar-engineered environment,especially in the presence of anions.In this study,ferrihydrite was coprecipitated with biochar to investigate how ferrihydritebiochar composite affects the fate of heavy metals,especially in the coexistence of Cd(Ⅱ)and As(Ⅴ).In the solution system containing both Cd(Ⅱ)and As(Ⅴ),the maximum adsorption capacities of ferrihydrite-biochar composite for Cd(Ⅱ)and As(Ⅴ)reached 82.03μmol/g and 531.53μmol/g,respectively,much higher than those of the pure biochar(26.90μmol/g for Cd(Ⅱ),and 40.24μmol/g for As(Ⅴ))and ferrihydrite(42.26μmol/g for Cd(Ⅱ),and 248.25μmol/g for As(Ⅴ)).Cd(Ⅱ)adsorption increased in the presence of As(Ⅴ),possibly due to the changes in composite surface charge in the presence of As(Ⅴ),and the increased dispersion of ferrihydrite by biochar.Further microscopic and mechanistic results showed that Cd(Ⅱ)complexed with both biochar and ferrihydrite,while As(Ⅴ)was mainly complexed by ferrihydrite in the Cd(Ⅱ)and As(Ⅴ)coexistence system.Ferrihydrite posed vital importance for the co-adsorption of Cd(Ⅱ)and As(Ⅴ).The different distribution patterns revealed by this study help to a deeper understanding of the behaviors of cations and anions in the natural environment.展开更多
Hexavalent chromium[Cr(Ⅵ)]causes serious harm to the environment due to its high toxicity,solubility,and mobility.Ferrihydrites(Fh)are the main adsorbent and trapping agent of Cr(Ⅵ)in soils and aquifers,and they usu...Hexavalent chromium[Cr(Ⅵ)]causes serious harm to the environment due to its high toxicity,solubility,and mobility.Ferrihydrites(Fh)are the main adsorbent and trapping agent of Cr(Ⅵ)in soils and aquifers,and they usually coexist with silicate(Si),forming Si-containing ferrihydrite(Si-Fh)mixtures.However,the mechanism of Cr(Ⅵ)retention by Si-Fh mixtures is poorly understood.In this study,the behaviors and mechanisms of Cr(Ⅵ)adsorption onto Si-Fh with different Si/Fe molar ratios was investigated.Transmission electron microscope,Fourier transform infrared spectroscopy,X-ray diffraction,X-ray photoelectron spectroscopy,and other techniques were used to characterize Si-Fh and Cr(Ⅵ)-loading of Si-Fh.The results show that specific surface area of Si-Fh increases gradually with increasing Si/Fe ratios,but Cr(Ⅵ)adsorption on Si-Fh decreases with increasing Si/Fe ratios.This is because with an increase in Si/Fe molar ratio,the point of zero charge of Si-Fh gradually decreases and electrostatic repulsion between Si-Fh and Cr(Ⅵ)increases.However,the complexation of Cr(Ⅵ)is enhanced due to the increase in adsorbed hydroxyl(A-OH-)on Si-Fh with increasing Si/Fe molar ratio,which partly counteracts the effect of the electrostatic repulsion.Overall,the increase in the electrostatic repulsion has a greater impact on adsorption than the additional complexation with Si-Fh.Density functional theory calculation further supports this observation,showing the increases in electron variation of bonding atoms and reaction energies of inner spherical complexes with the increase in Si/Fe ratio.展开更多
基金supported by the Knowledge Innovation Program of Chinese Academy of Sciences(No. KZCX1-YW-06-03)
文摘The potential of microbial mediated iron plaque reduction, and associated arsenic (As) mobility were examined by iron reducing bacteria enriched from As contaminated paddy soil. To our knowledge, this is the first time to report the impact of microbial iron plaque reduction on As mobility. Iron reduction occurred during the inoculation of iron reducing enrichment culture in the treatments with iron plaque and ferrihydrite as the electron acceptors, respectively. The Fe(II) concentration with the treatment of anthraquinone-2, 6-disulfonic acid (AQDS) and iron reducing bacteria increased much faster than the control. Arsenic released from iron plaque with the iron reduction, and a significant correlation between Fe(II) and total As in culture was observed. However, compared with control, the increasing rate of As was inhibited by iron reducing bacteria especially in the presence of AQDS. In addition, the concentrations of As(III) and As(V) in abiotic treatments were higher than those in the biotic treatments at day 30. These results indicated that both microbial and chemical reductions of iron plaque caused As release from iron plaque to aqueous phase, however, microbial iron reduction induced the formation of more crystalline iron minerals, leading to As sequestration. In addition, the presence of AQDS in solution can accelerate the iron reduction, the As release from iron plaque and subsequently the As retention in the crystalline iron mineral. Thus, our results suggested that it is possible to remediate As contaminated soils by utilizing iron reducing bacteria and AQDS.
基金supported by the National Natural Science Foundation of China(No.41572031)the National Program for Support of Top-notch Young Professionals,Guangdong Provincial Youth Top-notch Talent Support Program(No.2014TQ01Z249)+1 种基金the Newton Advanced Fellowship Through the Royal Society in the United Kingdom(No.NA150190)the National Key Research and Development Plan(No.2016YFD0800700)
文摘The rapid development of nanoscience and nanotechnology, with thousands types of nanomaterials being produced, will lead to various environmental impacts. Thus,understanding the behaviors and fate of these nanomaterials is essential. This study focused on the interaction between polyhydroxy fullerenes(PHF) and ferrihydrite(Fh), a widespread iron(oxyhydr)oxide nanomineral and geosorbent. Our results showed that PHF were effectively adsorbed by Fh. The adsorption isotherm fitted the D-R model well, with an adsorption capacity of 67.1 mg/g. The adsorption mean free energy of 10.72 k J/mol suggested that PHF were chemisorbed on Fh. An increase in the solution p H and a decrease of the Fh surface zeta potential were observed after the adsorption of PHF on Fh; moreover, increasing initial solution p H led to a reduction of adsorption. The Fourier transform infrared spectra detected a red shift of C–O stretching from 1075 to 1062 cm-1 and a decrease of Fe–O bending, implying the interaction between PHF oxygenic functional groups and Fh surface hydroxyls. On the other hand, PHF affected the aggregation and reactivity of Fh by changing its surface physicochemical properties. Aggregation of PHF and Fh with individual particle sizes increasing from 2 nm to larger than 5 nm was measured by atomic force microscopy. The uniform distribution of C and Fe suggested that the aggregates of Fh were possibly bridged by PHF. Our results indicated that the interaction between PHF and Fh could evidently influence the migration of PHF, as well as the aggregation and reactivity of Fh.
基金supported by the National Natural Science Foundation of China (Nos. 41571449, 41271260, 41276101 and 41807035)the Fundamental Research Fund for the Central Universities of China (No. 20720160083)+2 种基金the Natural Science Foundation of Fujian Province of China (Nos. 2018J05073 and 2018Y0074)the Project of Educational Scientific Research of Fujian Province of China (Nos. JAT170831 and JA13344)the Open Fund of Key Laboratory of Measurement and Control System for Coastal Environment of China (No. S1-KF1701)
文摘Microbially mediated bioreduction of iron oxyhydroxide plays an important role in the biogeochemical cycle of iron.Geobacter sulfurreducens is a representative dissimilatory ironreducing bacterium that assembles electrically conductive pili and cytochromes.The impact of supplementation withγ-Fe_2O_3 nanoparticles(NPs)(0.2 and 0.6 g)on the G.sulfurreducens-mediated reduction of ferrihydrite was investigated.In the overall performance of microbial ferrihydrite reduction mediated byγ-Fe_2O_3 NPs,stronger reduction was observed in the presence of direct contact withγ-Fe_2O_3 NPs than with indirect contact.Compared to the production of Fe(Ⅱ)derived from biotic modification with ferrihydrite alone,increases greater than 1.6-and 1.4-fold in the production of Fe(Ⅱ)were detected in the biotic modifications in which direct contact with 0.2 g and 0.6 gγ-Fe_2O_3 NPs,respectively,occurred.X-ray diffraction analysis indicated that magnetite was a unique representative iron mineral in ferrihydrite when active G.sulfurreducens cells were in direct contact withγ-Fe_2O_3 NPs.Because of the sorption of biogenic Fe(Ⅱ)ontoγ-Fe_2O_3 NPs instead of ferrihydrite,the addition ofγ-Fe_2O_3 NPs could also contribute to increased duration of ferrihydrite reduction by preventing ferrihydrite surface passivation.Additionally,electron microscopy analysis confirmed that the direct addition ofγ-Fe_2O_3 NPs stimulated the electrically conductive pili and cytochromes to stretch,facilitating long-range electron transfer between the cells and ferrihydrite.The obtained findings provide a more comprehensive understanding of the effects of iron oxide NPs on soil biogeochemistry.
基金supported by the National Key R&D Program of China(No.2019YFC1803900)the National Natural Science Foundation of China(No.42107264)+1 种基金Guangdong Basic and Applied Basic Research Foundation(No.2020A1515110610)Guangzhou Basic and Applied Basic Research Foundation(No.202002030364)。
文摘The coexistence of cadmium(Cd(Ⅱ))and arsenate(As(Ⅴ))pollution has long been an environmental problem.Biochar,a porous carbonaceous material with tunable functionality,has been used for the remediation of contaminated soils.However,it is still challenging for the dynamic quantification and mechanistic understanding of the simultaneous sequestration of multi-metals in biochar-engineered environment,especially in the presence of anions.In this study,ferrihydrite was coprecipitated with biochar to investigate how ferrihydritebiochar composite affects the fate of heavy metals,especially in the coexistence of Cd(Ⅱ)and As(Ⅴ).In the solution system containing both Cd(Ⅱ)and As(Ⅴ),the maximum adsorption capacities of ferrihydrite-biochar composite for Cd(Ⅱ)and As(Ⅴ)reached 82.03μmol/g and 531.53μmol/g,respectively,much higher than those of the pure biochar(26.90μmol/g for Cd(Ⅱ),and 40.24μmol/g for As(Ⅴ))and ferrihydrite(42.26μmol/g for Cd(Ⅱ),and 248.25μmol/g for As(Ⅴ)).Cd(Ⅱ)adsorption increased in the presence of As(Ⅴ),possibly due to the changes in composite surface charge in the presence of As(Ⅴ),and the increased dispersion of ferrihydrite by biochar.Further microscopic and mechanistic results showed that Cd(Ⅱ)complexed with both biochar and ferrihydrite,while As(Ⅴ)was mainly complexed by ferrihydrite in the Cd(Ⅱ)and As(Ⅴ)coexistence system.Ferrihydrite posed vital importance for the co-adsorption of Cd(Ⅱ)and As(Ⅴ).The different distribution patterns revealed by this study help to a deeper understanding of the behaviors of cations and anions in the natural environment.
基金supported by the National Natural Science Foundation of China(Nos.42130509 and 42177061)the National Key Research and Development Program of China(No.2020YFC1808300)Jilin Province Science and Technology Development Projects(No.20190303056SF)。
文摘Hexavalent chromium[Cr(Ⅵ)]causes serious harm to the environment due to its high toxicity,solubility,and mobility.Ferrihydrites(Fh)are the main adsorbent and trapping agent of Cr(Ⅵ)in soils and aquifers,and they usually coexist with silicate(Si),forming Si-containing ferrihydrite(Si-Fh)mixtures.However,the mechanism of Cr(Ⅵ)retention by Si-Fh mixtures is poorly understood.In this study,the behaviors and mechanisms of Cr(Ⅵ)adsorption onto Si-Fh with different Si/Fe molar ratios was investigated.Transmission electron microscope,Fourier transform infrared spectroscopy,X-ray diffraction,X-ray photoelectron spectroscopy,and other techniques were used to characterize Si-Fh and Cr(Ⅵ)-loading of Si-Fh.The results show that specific surface area of Si-Fh increases gradually with increasing Si/Fe ratios,but Cr(Ⅵ)adsorption on Si-Fh decreases with increasing Si/Fe ratios.This is because with an increase in Si/Fe molar ratio,the point of zero charge of Si-Fh gradually decreases and electrostatic repulsion between Si-Fh and Cr(Ⅵ)increases.However,the complexation of Cr(Ⅵ)is enhanced due to the increase in adsorbed hydroxyl(A-OH-)on Si-Fh with increasing Si/Fe molar ratio,which partly counteracts the effect of the electrostatic repulsion.Overall,the increase in the electrostatic repulsion has a greater impact on adsorption than the additional complexation with Si-Fh.Density functional theory calculation further supports this observation,showing the increases in electron variation of bonding atoms and reaction energies of inner spherical complexes with the increase in Si/Fe ratio.