Simultaneous bandwidth(BW) enhancement and time-delay signature(TDS) suppression of chaotic lasing over a wide range of parameters by mutually coupled semiconductor lasers(MCSLs) with random optical injection are prop...Simultaneous bandwidth(BW) enhancement and time-delay signature(TDS) suppression of chaotic lasing over a wide range of parameters by mutually coupled semiconductor lasers(MCSLs) with random optical injection are proposed and numerically investigated. The influences of system parameters on TDS suppression(characterized by autocorrelation function(ACF) and permutation entropy(PE) around characteristic time) and chaos BW are investigated. The results show that, with the increasing bias current, the ranges of parameters(detuning and injection strength) for the larger BW(> 20 GHz) are broadened considerably, while the parameter range for optimized TDS(< 0.1) is not shrunk obviously.Under optimized parameters, the system can simultaneously achieve two chaos outputs with enhanced BW(> 20 GHz)and perfect TDS suppression. In addition, the system can generate two-channel high-speed truly physical random number sequences at 200 Gbits/s for each channel.展开更多
Space swarms,enabled by the miniaturization of spacecraft,have the potential capability to lower costs,increase efficiencies,and broaden the horizons of space missions.The formation control problem of large-scale spac...Space swarms,enabled by the miniaturization of spacecraft,have the potential capability to lower costs,increase efficiencies,and broaden the horizons of space missions.The formation control problem of large-scale spacecraft swarms flying around an elliptic orbit is considered.The objective is to drive the entire formation to produce a specified spatial pattern.The relative motion between agents becomes complicated as the number of agents increases.Hence,a density-based method is adopted,which concerns the density evolution of the entire swarm instead of the trajectories of individuals.The density-based method manipulates the density evolution with Partial Differential Equations(PDEs).This density-based control in this work has two aspects,global pattern control of the whole swarm and local collision-avoidance between nearby agents.The global behavior of the swarm is driven via designing velocity fields.For each spacecraft,the Q-guidance steering law is adopted to track the desired velocity with accelerations in a distributed manner.However,the final stable velocity field is required to be zero in the classical density-based approach,which appears as an obstacle from the viewpoint of astrodynamics since the periodic relative motion is always time-varying.To solve this issue,a novel transformation is constructed based on the periodic solutions of Tschauner-Hempel(TH)equations.The relative motion in Cartesian coordinates is then transformed into a new coordinate system,which permits zero-velocity in a stable configuration.The local behavior of the swarm,such as achieving collision avoidance,is achieved via a carefully-designed local density estimation algorithm.Numerical simulations are provided to demonstrate the performance of this approach.展开更多
Islanding detection is an essential function for safety and reliability in grid-connected distributed generation (DG) systems. Several methods for islanding detection are proposed, but most of them may fail under mult...Islanding detection is an essential function for safety and reliability in grid-connected distributed generation (DG) systems. Several methods for islanding detection are proposed, but most of them may fail under multi-source configurations, or they may produce important power quality degradation which gets worse with increasing DG penetration. This paper presents an active islanding detection algorithm for Voltage Source Inverter (VSI) based multi-source DG systems. The proposed method is based on the Voltage Positive Feedback (VPF) theory to generate a limited active power perturbation. Theoretical analyses were performed and simulations by MATLAB /Simulink /SimPowerSystems were used to evaluate the algorithm’s performance and its advantages concerning the time response and the effects on power quality, which turned out to be negligible. The algorithm performance was tested under critical conditions: load with unity power factor, load with high quality factor, and load matching DER’s powers.展开更多
以液压型风力发电机组为研究对象,为使功率追踪的过程平稳,研究机组的最佳功率追踪控制方法.本文利用反馈线性化方法解决系统非线性问题,以液压系统压力为控制输出,设计最佳功率追踪控制器,并提出一种反馈线性化方法的工程应用解决方案...以液压型风力发电机组为研究对象,为使功率追踪的过程平稳,研究机组的最佳功率追踪控制方法.本文利用反馈线性化方法解决系统非线性问题,以液压系统压力为控制输出,设计最佳功率追踪控制器,并提出一种反馈线性化方法的工程应用解决方案,即结合传统PID控制解决反馈线性化工程应用中依赖模型参数精度的问题.依托30 k VA液压型风力发电机组半物理仿真实验台进行仿真和实验研究,验证了该方法的可行性,为机组进一步研究奠定理论与实验基础.展开更多
基金Project supported by the Sichuan Science and Technology Program,China(Grant No.2019YJ0530)the Scientific Research Fund of Sichuan Provincial Education Department,China(Grant No.18ZA0401)+1 种基金the Innovative Training Program for College Student of Sichuan Normal University,China(Grant No.S20191063609)the National Natural Science Foundation of China(Grant No.61205079)。
文摘Simultaneous bandwidth(BW) enhancement and time-delay signature(TDS) suppression of chaotic lasing over a wide range of parameters by mutually coupled semiconductor lasers(MCSLs) with random optical injection are proposed and numerically investigated. The influences of system parameters on TDS suppression(characterized by autocorrelation function(ACF) and permutation entropy(PE) around characteristic time) and chaos BW are investigated. The results show that, with the increasing bias current, the ranges of parameters(detuning and injection strength) for the larger BW(> 20 GHz) are broadened considerably, while the parameter range for optimized TDS(< 0.1) is not shrunk obviously.Under optimized parameters, the system can simultaneously achieve two chaos outputs with enhanced BW(> 20 GHz)and perfect TDS suppression. In addition, the system can generate two-channel high-speed truly physical random number sequences at 200 Gbits/s for each channel.
基金co-supported by the Strategic Priority Program on Space Science of the Chinese Academy of Sciences (No.XDA15014902)the Key Research Program of the Chinese Academy of Sciences (No. ZDRW-KT-2019-1-0102)
文摘Space swarms,enabled by the miniaturization of spacecraft,have the potential capability to lower costs,increase efficiencies,and broaden the horizons of space missions.The formation control problem of large-scale spacecraft swarms flying around an elliptic orbit is considered.The objective is to drive the entire formation to produce a specified spatial pattern.The relative motion between agents becomes complicated as the number of agents increases.Hence,a density-based method is adopted,which concerns the density evolution of the entire swarm instead of the trajectories of individuals.The density-based method manipulates the density evolution with Partial Differential Equations(PDEs).This density-based control in this work has two aspects,global pattern control of the whole swarm and local collision-avoidance between nearby agents.The global behavior of the swarm is driven via designing velocity fields.For each spacecraft,the Q-guidance steering law is adopted to track the desired velocity with accelerations in a distributed manner.However,the final stable velocity field is required to be zero in the classical density-based approach,which appears as an obstacle from the viewpoint of astrodynamics since the periodic relative motion is always time-varying.To solve this issue,a novel transformation is constructed based on the periodic solutions of Tschauner-Hempel(TH)equations.The relative motion in Cartesian coordinates is then transformed into a new coordinate system,which permits zero-velocity in a stable configuration.The local behavior of the swarm,such as achieving collision avoidance,is achieved via a carefully-designed local density estimation algorithm.Numerical simulations are provided to demonstrate the performance of this approach.
文摘Islanding detection is an essential function for safety and reliability in grid-connected distributed generation (DG) systems. Several methods for islanding detection are proposed, but most of them may fail under multi-source configurations, or they may produce important power quality degradation which gets worse with increasing DG penetration. This paper presents an active islanding detection algorithm for Voltage Source Inverter (VSI) based multi-source DG systems. The proposed method is based on the Voltage Positive Feedback (VPF) theory to generate a limited active power perturbation. Theoretical analyses were performed and simulations by MATLAB /Simulink /SimPowerSystems were used to evaluate the algorithm’s performance and its advantages concerning the time response and the effects on power quality, which turned out to be negligible. The algorithm performance was tested under critical conditions: load with unity power factor, load with high quality factor, and load matching DER’s powers.
文摘以液压型风力发电机组为研究对象,为使功率追踪的过程平稳,研究机组的最佳功率追踪控制方法.本文利用反馈线性化方法解决系统非线性问题,以液压系统压力为控制输出,设计最佳功率追踪控制器,并提出一种反馈线性化方法的工程应用解决方案,即结合传统PID控制解决反馈线性化工程应用中依赖模型参数精度的问题.依托30 k VA液压型风力发电机组半物理仿真实验台进行仿真和实验研究,验证了该方法的可行性,为机组进一步研究奠定理论与实验基础.