During daylight, plants produce excess photo- synthates, including sucrose, which is temporarily stored in the vacuole. At night, plants remobilize sucrose to sustain metabolism and growth. Based on homology to other ...During daylight, plants produce excess photo- synthates, including sucrose, which is temporarily stored in the vacuole. At night, plants remobilize sucrose to sustain metabolism and growth. Based on homology to other sucrose transporter (SUT) proteins, we hypothesized the maize (Zea mays) SUCROSE TRANSPORTER2 (ZmSUT2) protein functions as a sucrose/H^+ symporter on the vacuolar membrane to export transiently stored sucrose. To understand the biological role of ZmSut2, we examined its spatial and temporal gene expression, determined the protein subcellular localization, and characterized loss-of- function mutations. ZmSut2 mRNA was ubiquitously expressed and exhibited diurnal cycling in transcript abundance. Expressing a translational fusion of ZmSUT2 fused to a red fluorescent protein in maize mesophyll cell protoplasts revealed that the protein localized to the tonoplast. Under field conditions, zmsut2 mutant plants grew slower, possessed smaller tassels and ears, and produced fewer kernels when compared to wild-type siblings, zmsut2 mutants also accumulated two-fold more sucrose, glucose, and fructose as well as starch in source leaves compared to wild type. These findings suggest (i) ZmSUT2 functions to remobilize sucrose out of the vacuole for subsequent use in growing tissues; and (ii) its function provides an important contribution to maize development and agronomic yield.展开更多
While monocots lack the ability to produce a vascular cambium or woody growth, some monocot lineages evolved a novel lateral meristem, the monocot cambium, which supports secondary radial growth of stems. In contrast ...While monocots lack the ability to produce a vascular cambium or woody growth, some monocot lineages evolved a novel lateral meristem, the monocot cambium, which supports secondary radial growth of stems. In contrast to the vascular cambium found in woody angiosperm and gymnosperm species, the monocot cambium produces secondary vascular bundles, which have an amphivasal organization of tracheids encircling a central strand of phloem. Currently there is no information concerning the molecular genetic basis of the develop- ment or evolution of the monocot cambium. Here we report high-quality transcriptomes for monocot cambium and early derivative tissues in two monocot genera, Yucca and Cordyline. Monocot cambium transcript profiles were compared to those of vascular cambia and secondary xylem tissues of two forest tree species, Populus trichocarpa and Eucalyptus grandis. Monocot cambium transcript levels showed that there are extensive overlaps between the regulation of monocot cambia and vascular cambia. Candidate regulatory genes that vary between the monocot and vascular cambia were also identified, and included members of the KANADI and CLE families involved in polarity and cell-cell signaling, respectively. We suggest that the monocot cambium may have evolved in part through reactivation of genetic mechanisms involved in vascular cambium regulation.展开更多
We investigated the feasibility of obtaining large photoresponse in metal-semiconductor-metal(MSM) type single nanowire device where one contact can be blocking type. We showed that suitable modification of the blocki...We investigated the feasibility of obtaining large photoresponse in metal-semiconductor-metal(MSM) type single nanowire device where one contact can be blocking type. We showed that suitable modification of the blocking contact by deposition of a capping metal using focused electron beam(FEB) can lead to considerable enhancement of the photoresponse. The work was done in a single Cu:TCNQ nanowire device fabricated by direct growth of nanowires(NW) from pre-patterned Cu electrode which makes the contact ohmic with the other contact made from Au. Analysis of the data shows that the large photoresponse of the devices arises predominantly due to reduction of the barriers at the Au/NW blocking contact on illumination. This is caused by the diffusion of the photo generated carriers from the nanowires to the contact region. When the barrier height is further reduced by treating the contact with FEB deposited Pt, this results in a large enhancement in the device photoresponse.展开更多
Metabolite transport processes and primary metabolism are highly interconnected. This study exam- ined the importance of source-to-sink nitrogen partition- ing, and associated nitrogen metabolism for carbon capture, t...Metabolite transport processes and primary metabolism are highly interconnected. This study exam- ined the importance of source-to-sink nitrogen partition- ing, and associated nitrogen metabolism for carbon capture, transport and usage. Specifically, Arabidopsis aap8 (AMINO ACID PERMEASE 8) mutant lines were analyzed to resolve the consequences of reduced amino acid phloem loading for source leaf carbon metabolism, sucrose phloem transport and sink development during vegetative and reproductive growth phase. Results showed that decreased amino acid transport had a negative effect on sink development of aap8 lines throughout the life cycle, leading to an overall decrease in plant biomass. During vegetative stage, photosynthe- sis and carbohydrate levels were decreased in aap8 leaves, while expression of carbon metabolism and transport genes, as well as sucrose phloem transport were not affected despite reduced sink strength. However, when aap8 plants transitioned to reproductive phase, carbon fixation and assimilation as well as sucrose partitioning to siliques were strongly decreased. Overall, this work demonstrates that phloem loading of nitrogen has varying implications for carbon fixation, assimilation and source-to-sink allocation depending on plant growth stage. It further suggests alterations in source-sink relationships, and regulation of carbon metabolism and transport by sink strength in a development-dependent manner.展开更多
The bonded types and the mechanism of the borides’ structures of the transition metalshave been a very interesting problem to scientific workers in various fields of solids, met-als, physics and chemistry at home and...The bonded types and the mechanism of the borides’ structures of the transition metalshave been a very interesting problem to scientific workers in various fields of solids, met-als, physics and chemistry at home and abroad. It has evoked much controversy. It isvery difficult to calculate the iron boride in the energy band theory because of the com-plexity of its structure. The analysis of valence electron structure of FeB is given in展开更多
基金supported by the National Science Foundation Plant Genome Research Program, grant no. IOS-1025976 to DMB
文摘During daylight, plants produce excess photo- synthates, including sucrose, which is temporarily stored in the vacuole. At night, plants remobilize sucrose to sustain metabolism and growth. Based on homology to other sucrose transporter (SUT) proteins, we hypothesized the maize (Zea mays) SUCROSE TRANSPORTER2 (ZmSUT2) protein functions as a sucrose/H^+ symporter on the vacuolar membrane to export transiently stored sucrose. To understand the biological role of ZmSut2, we examined its spatial and temporal gene expression, determined the protein subcellular localization, and characterized loss-of- function mutations. ZmSut2 mRNA was ubiquitously expressed and exhibited diurnal cycling in transcript abundance. Expressing a translational fusion of ZmSUT2 fused to a red fluorescent protein in maize mesophyll cell protoplasts revealed that the protein localized to the tonoplast. Under field conditions, zmsut2 mutant plants grew slower, possessed smaller tassels and ears, and produced fewer kernels when compared to wild-type siblings, zmsut2 mutants also accumulated two-fold more sucrose, glucose, and fructose as well as starch in source leaves compared to wild type. These findings suggest (i) ZmSUT2 functions to remobilize sucrose out of the vacuole for subsequent use in growing tissues; and (ii) its function provides an important contribution to maize development and agronomic yield.
基金the US Forest ServiceUSDA AFRI grants 2011-67013-30062 and 2014-04041supported by NSF PGRP Fellowship grant IOS-1402064
文摘While monocots lack the ability to produce a vascular cambium or woody growth, some monocot lineages evolved a novel lateral meristem, the monocot cambium, which supports secondary radial growth of stems. In contrast to the vascular cambium found in woody angiosperm and gymnosperm species, the monocot cambium produces secondary vascular bundles, which have an amphivasal organization of tracheids encircling a central strand of phloem. Currently there is no information concerning the molecular genetic basis of the develop- ment or evolution of the monocot cambium. Here we report high-quality transcriptomes for monocot cambium and early derivative tissues in two monocot genera, Yucca and Cordyline. Monocot cambium transcript profiles were compared to those of vascular cambia and secondary xylem tissues of two forest tree species, Populus trichocarpa and Eucalyptus grandis. Monocot cambium transcript levels showed that there are extensive overlaps between the regulation of monocot cambia and vascular cambia. Candidate regulatory genes that vary between the monocot and vascular cambia were also identified, and included members of the KANADI and CLE families involved in polarity and cell-cell signaling, respectively. We suggest that the monocot cambium may have evolved in part through reactivation of genetic mechanisms involved in vascular cambium regulation.
基金Nanomission,Department of Science and Technology,Govt. of India for financial support as sponsored project:Theme Unit of Excellence in Nanodevice Technology
文摘We investigated the feasibility of obtaining large photoresponse in metal-semiconductor-metal(MSM) type single nanowire device where one contact can be blocking type. We showed that suitable modification of the blocking contact by deposition of a capping metal using focused electron beam(FEB) can lead to considerable enhancement of the photoresponse. The work was done in a single Cu:TCNQ nanowire device fabricated by direct growth of nanowires(NW) from pre-patterned Cu electrode which makes the contact ohmic with the other contact made from Au. Analysis of the data shows that the large photoresponse of the devices arises predominantly due to reduction of the barriers at the Au/NW blocking contact on illumination. This is caused by the diffusion of the photo generated carriers from the nanowires to the contact region. When the barrier height is further reduced by treating the contact with FEB deposited Pt, this results in a large enhancement in the device photoresponse.
基金supported by the U.S. National Science Foundation grant number IOS 1021286 and IOS 1457183
文摘Metabolite transport processes and primary metabolism are highly interconnected. This study exam- ined the importance of source-to-sink nitrogen partition- ing, and associated nitrogen metabolism for carbon capture, transport and usage. Specifically, Arabidopsis aap8 (AMINO ACID PERMEASE 8) mutant lines were analyzed to resolve the consequences of reduced amino acid phloem loading for source leaf carbon metabolism, sucrose phloem transport and sink development during vegetative and reproductive growth phase. Results showed that decreased amino acid transport had a negative effect on sink development of aap8 lines throughout the life cycle, leading to an overall decrease in plant biomass. During vegetative stage, photosynthe- sis and carbohydrate levels were decreased in aap8 leaves, while expression of carbon metabolism and transport genes, as well as sucrose phloem transport were not affected despite reduced sink strength. However, when aap8 plants transitioned to reproductive phase, carbon fixation and assimilation as well as sucrose partitioning to siliques were strongly decreased. Overall, this work demonstrates that phloem loading of nitrogen has varying implications for carbon fixation, assimilation and source-to-sink allocation depending on plant growth stage. It further suggests alterations in source-sink relationships, and regulation of carbon metabolism and transport by sink strength in a development-dependent manner.
文摘The bonded types and the mechanism of the borides’ structures of the transition metalshave been a very interesting problem to scientific workers in various fields of solids, met-als, physics and chemistry at home and abroad. It has evoked much controversy. It isvery difficult to calculate the iron boride in the energy band theory because of the com-plexity of its structure. The analysis of valence electron structure of FeB is given in