The practical applications of carbon anode for lithium-ion batteries(LIBs)are largely obstructed by their moderate rate capability and cyclic stability.Herein,we report a N,S-codoped porous carbon nanosheet(NSC)decora...The practical applications of carbon anode for lithium-ion batteries(LIBs)are largely obstructed by their moderate rate capability and cyclic stability.Herein,we report a N,S-codoped porous carbon nanosheet(NSC)decorated with Fe_(3)C nanoparticles(Fe_(3)C/NSC)by a one-pot pyrolysis process.The high surface area and abundant defects of NSC can not only promote electrons and ions transfer,but also induce high pseudocapacitive contribution.More importantly,the synergistic catalysis effect of Fe-Nx and Fe_(3)C can catalyze the reversible conversion of some solid electrolyte interface(SEI)components to offer excess capacity during cycling.As expected,the Fe_(3)C-NSC anode delivers a discharge capacity of750 mAh·g^(-1)under a current density of 0.5 A·g^(-1)through 500 cycles and retains a dis-charge capacity of 366 mAh·g^(-1)at 4 A·g^(-1)after 1600 cycles,respectively.Most importantly,the lithium-ion capacitors based on Fe_(3)C/NSC anode demonstrate a high energy density of 249.5 Wh·kg^(-1)at 560 W·kg^(-1).展开更多
基金financially supported by the National Science Foundation of China (Nos. 51772169, 52072217 and 51802261)the National Key R&D Program of China (No. 2018YFB0905400)+2 种基金the Major Technological Innovation Project of Hubei Science and Technology Department (No. 2019AAA164)the Natural Science Foundation of Hubei Province of China (No. 2019CFB337)the Natural Science Foundation of Hubei Provincial Department of Education (No. Q20191204)
文摘The practical applications of carbon anode for lithium-ion batteries(LIBs)are largely obstructed by their moderate rate capability and cyclic stability.Herein,we report a N,S-codoped porous carbon nanosheet(NSC)decorated with Fe_(3)C nanoparticles(Fe_(3)C/NSC)by a one-pot pyrolysis process.The high surface area and abundant defects of NSC can not only promote electrons and ions transfer,but also induce high pseudocapacitive contribution.More importantly,the synergistic catalysis effect of Fe-Nx and Fe_(3)C can catalyze the reversible conversion of some solid electrolyte interface(SEI)components to offer excess capacity during cycling.As expected,the Fe_(3)C-NSC anode delivers a discharge capacity of750 mAh·g^(-1)under a current density of 0.5 A·g^(-1)through 500 cycles and retains a dis-charge capacity of 366 mAh·g^(-1)at 4 A·g^(-1)after 1600 cycles,respectively.Most importantly,the lithium-ion capacitors based on Fe_(3)C/NSC anode demonstrate a high energy density of 249.5 Wh·kg^(-1)at 560 W·kg^(-1).