期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
浅析如何控制烧结矿中FeO的成分
1
作者 谭真 《黑龙江冶金》 2013年第6期47-48,共2页
简要分析总结了影响烧结矿中FeO成分的因素,以及为此而采取的措施。
关键词 烧结矿 feo成分 配碳量 燃料粒度 碱度
下载PDF
基于EEMD和机器学习的烧结矿FeO成分长短期综合预报 被引量:6
2
作者 张振 唐珏 +3 位作者 储满生 柳政根 李福民 吕庆 《钢铁》 CAS CSCD 北大核心 2023年第8期32-40,共9页
炼铁讲“七分原料,三分操作”,烧结矿是高炉炼铁的主要原料,FeO成分是影响烧结矿还原性、强度和粒度的重要指标,也是影响高炉铁水产量和燃料比的重要因素。因此,及时精确地掌握烧结矿FeO含量对于指导高炉炼铁的顺利生产具有显著作用。... 炼铁讲“七分原料,三分操作”,烧结矿是高炉炼铁的主要原料,FeO成分是影响烧结矿还原性、强度和粒度的重要指标,也是影响高炉铁水产量和燃料比的重要因素。因此,及时精确地掌握烧结矿FeO含量对于指导高炉炼铁的顺利生产具有显著作用。针对烧结矿FeO成分检测结果延时、精度差的问题,提出并建立一种集合经验模式分解EEMD和机器学习的FeO成分长短期综合预报模型。针对烧结数据进行探索性分析,挖掘了烧结数据存在的特性,有根据地采用箱线图和滑动窗口处理数据,保证了数据价值,为建模夯实了数据基础。综合模型包含2个模块。长期预报模型应用EEMD分解波动型FeO成分数据,降低输入数据的复杂性,以双向长短期记忆神经网络Bi-LSTM进行3 h内FeO成分的提前预报;短期预报模块融合EEMD、特征选择和提取方法构造衍生特征,增强模型对于输入和目标数据的学习能力,以极限树ET对下1 h的FeO成分进行预报。在未知烧结数据测试集的验证下发现,EEMD辅助机器学习建模能够大幅提升FeO成分预报精度和稳定性,EEMD-Bi-LSTM和EEMD-ET模型的平均绝对百分比误差M_(APE)为1%左右、均方误差M_(SE)为0.027左右,误差接近零值。预测区间命中率最高能达到94%以上,FeO成分预测趋势与真实情况一致。此结果有助于现场实现FeO成分趋势和数值的精准提前把控。 展开更多
关键词 烧结矿feo成分 长短期综合预报 EEMD 机器学习 数据分解 特征构造
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部