In this paper,magnetic composite Fe3 O4/CeO2(MC Fe/Ce) was synthesized via CeO2 covered onto the surface of Fe3O4 by sol-precipitation method.The as-synthesized samples were characterized by FE-SEM,XRD,SEM-EDS and F...In this paper,magnetic composite Fe3 O4/CeO2(MC Fe/Ce) was synthesized via CeO2 covered onto the surface of Fe3O4 by sol-precipitation method.The as-synthesized samples were characterized by FE-SEM,XRD,SEM-EDS and FT-IR spectrum.The pseudo-second-order(PSO) kinetic can describe well the adsorption of Acid black 210(AB210) onto the as-obtained MC Fe/Ce of which the adsorption isotherm fits the Langmuir adsorption model better than Freundlich adsorption model.Furthermore,the maximum monolayer adsorption capacity of MC Fe/Ce is about 93 mg/g,which is 6 times more than that of commercial CeO2 for AB210.Moreover,the removal rate of the adsorbates for AB210 is 82.3% after first adsorption and still about 70% the fourth forth adsorption experiments within 120 min,which demonstrates that the obtained MC Fe/Ce has outstanding adsorption capacity and good stability.Additionally,the composite can be easily separated from aqueous solution in a few seconds with an external magnetic field due to its magnetic property,which is vital and has potential for its practical applications.展开更多
采用浸渍法成功合成了新型催化剂纳米Fe3O4/CeO_2,并且用Fe3O4/CeO_2-H_2O_2非均相Fenton体系对TCE进行降解研究,考察了初始pH、H_2O_2浓度、温度及催化剂投加量等因素对于TCE降解效率的影响.实验结果表明,Fe3O4/CeO_2-H_2O_2非均相Fen...采用浸渍法成功合成了新型催化剂纳米Fe3O4/CeO_2,并且用Fe3O4/CeO_2-H_2O_2非均相Fenton体系对TCE进行降解研究,考察了初始pH、H_2O_2浓度、温度及催化剂投加量等因素对于TCE降解效率的影响.实验结果表明,Fe3O4/CeO_2-H_2O_2非均相Fenton体系对TCE具有较好的去除效果:在初始pH=3,温度50℃,H_2O_2浓度30 mmol·L-1和Fe3O4/CeO_2投加量0.5 mg·L-1时,TCE去除率高达97.29%.同时实验结果表明pH在2~7范围内对TCE均有降解效果,所以相对于传统Fenton体系,该体系拥有更宽pH应用范围.目标污染物的降解符合一级动力学,反应活化能为30.77 k J·mol-1,表明反应易于进行.展开更多
In order to develop a catalyst with high activity for catalytic wet oxidation (CWO) process at room temperature and atmospheric pressure, Fe2O3-CeO2-TiO2/γ-Al2O3 catalyst was prepared by consecutive impregnation me...In order to develop a catalyst with high activity for catalytic wet oxidation (CWO) process at room temperature and atmospheric pressure, Fe2O3-CeO2-TiO2/γ-Al2O3 catalyst was prepared by consecutive impregnation method and the prepared parameters were optimized. The structure of the catalyst was characterized by BET, XRF, SEM and XPS technologies, and the actual wastewater was used to investigate the catalytic activity of Fe2O3-CeO2-TiO2/γ-Al2O3 in CWO process. The experimental results showed that the prepared catalyst exhibited good catalytic activity when the doping amount of Ti was 1.0 wt% (the weight ratio of Ti to carriers), and the middle product, Fe2O3-CeO2-TiO2/γ-Al2O3, was calcined in 450℃ for 2 h. The CWO experiment for treating actual dye wastewater indicated that the COD, color and TOC of actual wastewater were decreased by 62.23%, 50.12% and 41.26% in 3 h, respectively, and the ratio of BOD5/COD was increased from 0.19 to 0.30.展开更多
基金Project supported by the Capacity Building Program of Shanghai Local Universities(12160503600)
文摘In this paper,magnetic composite Fe3 O4/CeO2(MC Fe/Ce) was synthesized via CeO2 covered onto the surface of Fe3O4 by sol-precipitation method.The as-synthesized samples were characterized by FE-SEM,XRD,SEM-EDS and FT-IR spectrum.The pseudo-second-order(PSO) kinetic can describe well the adsorption of Acid black 210(AB210) onto the as-obtained MC Fe/Ce of which the adsorption isotherm fits the Langmuir adsorption model better than Freundlich adsorption model.Furthermore,the maximum monolayer adsorption capacity of MC Fe/Ce is about 93 mg/g,which is 6 times more than that of commercial CeO2 for AB210.Moreover,the removal rate of the adsorbates for AB210 is 82.3% after first adsorption and still about 70% the fourth forth adsorption experiments within 120 min,which demonstrates that the obtained MC Fe/Ce has outstanding adsorption capacity and good stability.Additionally,the composite can be easily separated from aqueous solution in a few seconds with an external magnetic field due to its magnetic property,which is vital and has potential for its practical applications.
文摘采用浸渍法成功合成了新型催化剂纳米Fe3O4/CeO_2,并且用Fe3O4/CeO_2-H_2O_2非均相Fenton体系对TCE进行降解研究,考察了初始pH、H_2O_2浓度、温度及催化剂投加量等因素对于TCE降解效率的影响.实验结果表明,Fe3O4/CeO_2-H_2O_2非均相Fenton体系对TCE具有较好的去除效果:在初始pH=3,温度50℃,H_2O_2浓度30 mmol·L-1和Fe3O4/CeO_2投加量0.5 mg·L-1时,TCE去除率高达97.29%.同时实验结果表明pH在2~7范围内对TCE均有降解效果,所以相对于传统Fenton体系,该体系拥有更宽pH应用范围.目标污染物的降解符合一级动力学,反应活化能为30.77 k J·mol-1,表明反应易于进行.
基金The National Basic Research Program (973) of China (No. 2004CB418505) the Foundation for Excellent Youth of HeilongjiangProvince
文摘In order to develop a catalyst with high activity for catalytic wet oxidation (CWO) process at room temperature and atmospheric pressure, Fe2O3-CeO2-TiO2/γ-Al2O3 catalyst was prepared by consecutive impregnation method and the prepared parameters were optimized. The structure of the catalyst was characterized by BET, XRF, SEM and XPS technologies, and the actual wastewater was used to investigate the catalytic activity of Fe2O3-CeO2-TiO2/γ-Al2O3 in CWO process. The experimental results showed that the prepared catalyst exhibited good catalytic activity when the doping amount of Ti was 1.0 wt% (the weight ratio of Ti to carriers), and the middle product, Fe2O3-CeO2-TiO2/γ-Al2O3, was calcined in 450℃ for 2 h. The CWO experiment for treating actual dye wastewater indicated that the COD, color and TOC of actual wastewater were decreased by 62.23%, 50.12% and 41.26% in 3 h, respectively, and the ratio of BOD5/COD was increased from 0.19 to 0.30.