Encapsulated gas microbubbles are well known as ultrasound contrast agents (UCAs) for medical ultrasound (US) imaging. With the development of shell materials and preparation technologies, the application of microbubb...Encapsulated gas microbubbles are well known as ultrasound contrast agents (UCAs) for medical ultrasound (US) imaging. With the development of shell materials and preparation technologies, the application of microbubbles has been enormously popular in molecular imaging, drug delivery and targeted therapy, etc. The objective of this study is to develop Fe3O4 nanoparticle-inclusion microbubble construct. The in vitro US imaging experiment indicates that the Fe3O4 nanoparticle-inclusion microbubbles have higher US enhancement than those without Fe3O4 nanoparticle-inclusion. According to the microbubble dynamic theory, the acoustic scattering properties can be quantified by scattering cross-section of the shell. The scattering study on Fe3O4 nanoparticle-inclusion microbubbles of different concentration shows that within a certain range of concentration, the scattering cross-section of microbubble increases with the addition of Fe3O4 nanoparticles. When exceeding the concentration range, the ultrasonic characteristic of microbubbles is damped. On the other hand, since Fe3O4 nanoparticles can also serve as the Magnetic Resonance Imaging (MRI) contrast agent, they can be potentially used as contrast agents for the double-modality (MRI and US) clinical studies. However, it is important to control the concentration of Fe3O4 nanoparticles in the shell in order to realize the combined functions of US and MRI.展开更多
Objective: To establish a method of genomic DNA extraction from whole blood using Fe3O4/Au composite particles as a carrier. Methods: Two crucial conditions (sodium chloride concentration and amount of the magnetic...Objective: To establish a method of genomic DNA extraction from whole blood using Fe3O4/Au composite particles as a carrier. Methods: Two crucial conditions (sodium chloride concentration and amount of the magnetic particles) were optimized and 8 different human whole blood samples were used to purify genomic DNA under the optimal condition. Then agarose gel electrophoresis and polymerase cbain reaction (PCR) were performed. Results: The optimal binding condition was 1.5 mol/L NaC1/10% PEG, and the optimal amount of Fe3O4/Au composite particles was 600μg. The yields of the genomic DNA from 100μl of different whole blood samples were 2-5 μg, and the ratio of A260/A280 was in the range of 1.70-1.90. The size of genomic DNA was about 23 kb and the PCR was valid. Conclusion: The purification system using Fe3O4/Au composite microparticles has advantages in high yield, high purity, ease of operating, time saving and avoiding centrifugation. The purified sample was found to function satisfactorily in PCR amplification.展开更多
基金Supported by the National Basic Research Program of China (Grant No. 2006CB933206)National Natural Science Foundation of China (Grant No. 50872021)
文摘Encapsulated gas microbubbles are well known as ultrasound contrast agents (UCAs) for medical ultrasound (US) imaging. With the development of shell materials and preparation technologies, the application of microbubbles has been enormously popular in molecular imaging, drug delivery and targeted therapy, etc. The objective of this study is to develop Fe3O4 nanoparticle-inclusion microbubble construct. The in vitro US imaging experiment indicates that the Fe3O4 nanoparticle-inclusion microbubbles have higher US enhancement than those without Fe3O4 nanoparticle-inclusion. According to the microbubble dynamic theory, the acoustic scattering properties can be quantified by scattering cross-section of the shell. The scattering study on Fe3O4 nanoparticle-inclusion microbubbles of different concentration shows that within a certain range of concentration, the scattering cross-section of microbubble increases with the addition of Fe3O4 nanoparticles. When exceeding the concentration range, the ultrasonic characteristic of microbubbles is damped. On the other hand, since Fe3O4 nanoparticles can also serve as the Magnetic Resonance Imaging (MRI) contrast agent, they can be potentially used as contrast agents for the double-modality (MRI and US) clinical studies. However, it is important to control the concentration of Fe3O4 nanoparticles in the shell in order to realize the combined functions of US and MRI.
基金Supported by the National High Technology Research and Development Program of China (2006AA020705)
文摘Objective: To establish a method of genomic DNA extraction from whole blood using Fe3O4/Au composite particles as a carrier. Methods: Two crucial conditions (sodium chloride concentration and amount of the magnetic particles) were optimized and 8 different human whole blood samples were used to purify genomic DNA under the optimal condition. Then agarose gel electrophoresis and polymerase cbain reaction (PCR) were performed. Results: The optimal binding condition was 1.5 mol/L NaC1/10% PEG, and the optimal amount of Fe3O4/Au composite particles was 600μg. The yields of the genomic DNA from 100μl of different whole blood samples were 2-5 μg, and the ratio of A260/A280 was in the range of 1.70-1.90. The size of genomic DNA was about 23 kb and the PCR was valid. Conclusion: The purification system using Fe3O4/Au composite microparticles has advantages in high yield, high purity, ease of operating, time saving and avoiding centrifugation. The purified sample was found to function satisfactorily in PCR amplification.