利用数值模拟方法模拟了在喷射成形Al Fe V Si系耐热铝合金过程中雾化液滴的飞行状态及凝固行为 ,给出了不同尺寸雾化液滴的冷却速度和固相分数随飞行距离的变化规律 ,并对雾化颗粒的形貌组织进行了观察分析。在雾化颗粒中观察到了尺寸...利用数值模拟方法模拟了在喷射成形Al Fe V Si系耐热铝合金过程中雾化液滴的飞行状态及凝固行为 ,给出了不同尺寸雾化液滴的冷却速度和固相分数随飞行距离的变化规律 ,并对雾化颗粒的形貌组织进行了观察分析。在雾化颗粒中观察到了尺寸在 1~ 10 μm的第二相 ,能谱及XRD分析表明这种第二相为Al12 (Fe ,V) 3展开更多
Al-8.5Fe-1.3V-1.7Si alloy was prepared by spray deposition and hot extrusion. The high temperature plastic deformation behavior of the spray deposited Al-8.5Fe-1.3V-1.7Si alloy was investigated in the strain rate rang...Al-8.5Fe-1.3V-1.7Si alloy was prepared by spray deposition and hot extrusion. The high temperature plastic deformation behavior of the spray deposited Al-8.5Fe-1.3V-1.7Si alloy was investigated in the strain rate range of 2.77×10-4-2.77×10-2 s-1 and temperature range of 350-550 ℃ by Gleebe-1500 thermomechanical simulator. The mechanism of the high temperature plastic deformation of the alloys was studied by TEM associated with the analysis of Rosler-Artz physical constitutive relationship based on the model of dislocation detaching from dispersion particles. The results show that Al-Fe-V-Si alloy has low strain hardening coefficient, and even exhibits work softening. Stress exponent n and activation energy Q were calculated based on Zener-Hollomon relation and Rosler-Artz physical model respectively. The Rosler-Artz physical model can give a good prediction for the abnormal behavior of high temperature deformation of spray deposited Al-Fe-V-Si alloy, that is, n larger than 8 and Q higher than 142 kJ/mol. However, because of the highly refined microstructure, the high temperature deformation behavior of spray deposited Al-Fe-V-Si alloy deviates more or less from the law predicted by using Rosler-Artz physical model.展开更多
文摘Al-8.5Fe-1.3V-1.7Si alloy was prepared by spray deposition and hot extrusion. The high temperature plastic deformation behavior of the spray deposited Al-8.5Fe-1.3V-1.7Si alloy was investigated in the strain rate range of 2.77×10-4-2.77×10-2 s-1 and temperature range of 350-550 ℃ by Gleebe-1500 thermomechanical simulator. The mechanism of the high temperature plastic deformation of the alloys was studied by TEM associated with the analysis of Rosler-Artz physical constitutive relationship based on the model of dislocation detaching from dispersion particles. The results show that Al-Fe-V-Si alloy has low strain hardening coefficient, and even exhibits work softening. Stress exponent n and activation energy Q were calculated based on Zener-Hollomon relation and Rosler-Artz physical model respectively. The Rosler-Artz physical model can give a good prediction for the abnormal behavior of high temperature deformation of spray deposited Al-Fe-V-Si alloy, that is, n larger than 8 and Q higher than 142 kJ/mol. However, because of the highly refined microstructure, the high temperature deformation behavior of spray deposited Al-Fe-V-Si alloy deviates more or less from the law predicted by using Rosler-Artz physical model.