油中溶解气体分析(dissolved gas analysis,DGA)是变压器故障诊断的重要方法。变压器故障诊断研究大多采用人工智能方法学习建立单个分类器,与单个分类器相比,分类器群能够更全面地学习样本集特性,达到更好的诊断效果。分类器间的差异...油中溶解气体分析(dissolved gas analysis,DGA)是变压器故障诊断的重要方法。变压器故障诊断研究大多采用人工智能方法学习建立单个分类器,与单个分类器相比,分类器群能够更全面地学习样本集特性,达到更好的诊断效果。分类器间的差异性是影响群体性能的主要因素,针对DGA特征量较少训练得到的分类器差异不大的问题,提出将核主成分分析(kernel principle component analysis,KPCA)与随机森林方法相结合,KPCA将样本从低维的状态空间非线性地映射到高维的核空间,在核空间用随机森林方法训练得到分类器群。对DGA故障样本以及加噪样本的诊断实验结果表明,KPCA能够有效地提取故障特征,用核特征量建模的诊断效果优于直接采用DGA特征量,分类器群的诊断效果以及抗干扰能力均高于单个分类器。展开更多
以某西南电网变电站出现的4种故障的实测数据作为数据集,针对高压直流输电(high voltage direct-current,HVDC)系统的故障诊断设计出一种基于集成学习(ensemble learning, EM)的故障诊断方法,显著提升了故障诊断的速度、精度和鲁棒性。...以某西南电网变电站出现的4种故障的实测数据作为数据集,针对高压直流输电(high voltage direct-current,HVDC)系统的故障诊断设计出一种基于集成学习(ensemble learning, EM)的故障诊断方法,显著提升了故障诊断的速度、精度和鲁棒性。首先,对4类故障数据进行数据预处理,同时对故障数据的特征进行提取并完成训练,使用故障数据标签对故障数据集进行均分权重。然后,计算当前弱分类器对带权重数据集的分类误差,并计算当前分类器在强分类器中的权重。最后,更新训练样本权值的分布得到强分类器,根据训练好的模型对不同数据集下的故障类型进行辨识实验。通过与BP神经网络故障诊断模型对比,所提出的方法在多组测试中可以达到89%以上的诊断准确率,错误率较低并且鲁棒性强,有利于HVDC系统的故障识别和快速诊断。展开更多
文摘以某西南电网变电站出现的4种故障的实测数据作为数据集,针对高压直流输电(high voltage direct-current,HVDC)系统的故障诊断设计出一种基于集成学习(ensemble learning, EM)的故障诊断方法,显著提升了故障诊断的速度、精度和鲁棒性。首先,对4类故障数据进行数据预处理,同时对故障数据的特征进行提取并完成训练,使用故障数据标签对故障数据集进行均分权重。然后,计算当前弱分类器对带权重数据集的分类误差,并计算当前分类器在强分类器中的权重。最后,更新训练样本权值的分布得到强分类器,根据训练好的模型对不同数据集下的故障类型进行辨识实验。通过与BP神经网络故障诊断模型对比,所提出的方法在多组测试中可以达到89%以上的诊断准确率,错误率较低并且鲁棒性强,有利于HVDC系统的故障识别和快速诊断。