The N-S trending Xiaojiang fault zone and the NW-SE trending Qujiang-Shiping fault zone are adjacent active fault systems and seismogenic zones associated with strong and major earthquakes in Yunnan, China. To underst...The N-S trending Xiaojiang fault zone and the NW-SE trending Qujiang-Shiping fault zone are adjacent active fault systems and seismogenic zones associated with strong and major earthquakes in Yunnan, China. To understand the interaction of the two fault systems, and its probable influence on earthquake occurrences, this paper conducts a synthetic study based on data of active tectonics, historical earthquakes, relocated small earthquakes, GPS station velocities and focal mechanism resolutions. The study makes several conclusions. (1) The active southward motion of the western side of the Xiaojiang fault zone (i.e. the side of the Sichuan-Yunnan block) has a persistent and intensive effect on the Qujiang-Shiping fault zone. The later fault zone has absorbed and transformed the southward motion of the western side of the former fault zone through dextral strike-slip/sheafing as well as transverse shortening/thrusting. (2) Along the Xiaojiang fault zone, the present sinistral strike-slip/sheafing rate decreases from 10 and 8 mm/a on the northern, central and central-southern segments to 4 mm/a on the southern segment. The decreased rate has been adjusted in the area along and surrounding the Qujiang-Shiping fault zone through reverse-dextral faulting and distributed sheafing and shortening. (3) The tectonic-dynamic relation between the Xiaojiang fault zone and the Qujiang-Shiping fault zone is also manifested by a close correlation of earthquake occurrences on the two fault zones. From 1500 to 1850 a sequence of strong and major earthquakes occurred along the Xiaojiang fault zone and its northern neighbor, the Zemuhe fault zone, which was characterized by gradually accelerating strain release, gradually shortening intervals between M≥7 events, and major releases occurring in the mid to later stages of the sequence. As a response to this sequence, after an 88-year delay, another sequence of 383 years (from 1588 to 1970) of strong and major earthquakes occurred on the Qujiang-Shiping fault zone, 展开更多
Based on the existing materials of fault segmentation,characteristic earthquakes,and their empirical relationships,we calculated the parameters of the fault segments,such as length,width,magnitudes of characteristic e...Based on the existing materials of fault segmentation,characteristic earthquakes,and their empirical relationships,we calculated the parameters of the fault segments,such as length,width,magnitudes of characteristic earthquakes,etc.Constrained by GPS velocity field,the slip rates of these fault segments in depth were inversed using the 3-D half-space elastic dislocation model.As not all of the recurrence periods and co-seismic displacements of characteristic earthquakes are known,we selected the fault segments with these two parameters known and calculated the accumulation rate of average co-seismic displacement,which shows the faults' slip rate in seismogenic layer.Then,the slip rate in depth was compared with that in seismogenic layer,the relationship between them was obtained,and this relationship was used to get the recurrence periods and co-seismic displacements of all fault segments.After the studies above,we calculated the co-seismic deformation field of all the earthquakes larger than M s 6.8 from AD 1700 one by one and inversed the potential displacement in the co-seismic deformation field.Then,we divided the potential displacement by the slip rate from GPS inversion to get the influences of these fault segments,added the influences into the elapsed time of the characteristic earthquakes,and obtained the earthquake hazard degree of all the segments we studied in the form of the ratio of elapsed time to recurrence period;so,we name the ratio as the Impending Earthquake Risk (IER).Historical earthquake cases show that the fault segment is in safety when the IER is less than 1 but in danger after the IER becomes larger than 1.In 2009,the IER is larger than 1 on the following segments,1.35 on the Tagong segment of Xianshuihe fault,1 on the Menggu-Dongchuan segment,1.04 on the Dongchuan-Xundian segment,and 1.09 on the Yiliang-Chengjiang segment of Xiaojiang fault.展开更多
基金supported by the Special Funds for Research of Earthquake Science (Grant No. 200708035)the Special Project M7 of China Earthquake Administration
文摘The N-S trending Xiaojiang fault zone and the NW-SE trending Qujiang-Shiping fault zone are adjacent active fault systems and seismogenic zones associated with strong and major earthquakes in Yunnan, China. To understand the interaction of the two fault systems, and its probable influence on earthquake occurrences, this paper conducts a synthetic study based on data of active tectonics, historical earthquakes, relocated small earthquakes, GPS station velocities and focal mechanism resolutions. The study makes several conclusions. (1) The active southward motion of the western side of the Xiaojiang fault zone (i.e. the side of the Sichuan-Yunnan block) has a persistent and intensive effect on the Qujiang-Shiping fault zone. The later fault zone has absorbed and transformed the southward motion of the western side of the former fault zone through dextral strike-slip/sheafing as well as transverse shortening/thrusting. (2) Along the Xiaojiang fault zone, the present sinistral strike-slip/sheafing rate decreases from 10 and 8 mm/a on the northern, central and central-southern segments to 4 mm/a on the southern segment. The decreased rate has been adjusted in the area along and surrounding the Qujiang-Shiping fault zone through reverse-dextral faulting and distributed sheafing and shortening. (3) The tectonic-dynamic relation between the Xiaojiang fault zone and the Qujiang-Shiping fault zone is also manifested by a close correlation of earthquake occurrences on the two fault zones. From 1500 to 1850 a sequence of strong and major earthquakes occurred along the Xiaojiang fault zone and its northern neighbor, the Zemuhe fault zone, which was characterized by gradually accelerating strain release, gradually shortening intervals between M≥7 events, and major releases occurring in the mid to later stages of the sequence. As a response to this sequence, after an 88-year delay, another sequence of 383 years (from 1588 to 1970) of strong and major earthquakes occurred on the Qujiang-Shiping fault zone,
基金supported by the National Basic Research Program of China (Grant No. 2008CB425704)the Open Foundation of State Key Laboratory of Earthquake Dynamics (Grant No. LED2009B02)
文摘Based on the existing materials of fault segmentation,characteristic earthquakes,and their empirical relationships,we calculated the parameters of the fault segments,such as length,width,magnitudes of characteristic earthquakes,etc.Constrained by GPS velocity field,the slip rates of these fault segments in depth were inversed using the 3-D half-space elastic dislocation model.As not all of the recurrence periods and co-seismic displacements of characteristic earthquakes are known,we selected the fault segments with these two parameters known and calculated the accumulation rate of average co-seismic displacement,which shows the faults' slip rate in seismogenic layer.Then,the slip rate in depth was compared with that in seismogenic layer,the relationship between them was obtained,and this relationship was used to get the recurrence periods and co-seismic displacements of all fault segments.After the studies above,we calculated the co-seismic deformation field of all the earthquakes larger than M s 6.8 from AD 1700 one by one and inversed the potential displacement in the co-seismic deformation field.Then,we divided the potential displacement by the slip rate from GPS inversion to get the influences of these fault segments,added the influences into the elapsed time of the characteristic earthquakes,and obtained the earthquake hazard degree of all the segments we studied in the form of the ratio of elapsed time to recurrence period;so,we name the ratio as the Impending Earthquake Risk (IER).Historical earthquake cases show that the fault segment is in safety when the IER is less than 1 but in danger after the IER becomes larger than 1.In 2009,the IER is larger than 1 on the following segments,1.35 on the Tagong segment of Xianshuihe fault,1 on the Menggu-Dongchuan segment,1.04 on the Dongchuan-Xundian segment,and 1.09 on the Yiliang-Chengjiang segment of Xiaojiang fault.