期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于FBEC-YOLOv5s的采掘工作面多目标检测研究
1
作者 张辉 苏国用 赵东洋 《工矿自动化》 CSCD 北大核心 2023年第11期39-45,共7页
针对采掘工作面目标尺度跨度大、多目标间相互遮挡严重及恶劣环境导致的检测精度降低等问题,提出了一种基于FBEC-YOLOv5s的采掘工作面多目标检测算法。首先,在主干网络引入FasterNet网络,以凭借其残差连接与批标准化模块,增强模型的特... 针对采掘工作面目标尺度跨度大、多目标间相互遮挡严重及恶劣环境导致的检测精度降低等问题,提出了一种基于FBEC-YOLOv5s的采掘工作面多目标检测算法。首先,在主干网络引入FasterNet网络,以凭借其残差连接与批标准化模块,增强模型的特征提取和语义信息捕捉能力;其次,在YOLOv5s模型颈部融合BiFPN网络,以通过其双向跨尺度连接和快速归一化融合操作,实现多尺度特征的快速捕捉与融合;最后,采用ECIoU损失函数代替CIoU损失函数,以提升检测框定位精度和模型收敛速度。实验结果表明:(1)在满足煤矿井下实时检测要求的同时,FBEC-YOLOv5s模型的准确率较YOLOv5s模型的准确率提升了3.6%。(2)与YOLOv5s模型相比,FBEC-YOLOv5s模型的平均检测精度均值上升了2.8%,平均检测精度均值为92.4%,能够满足实时检测要求。(3)FBEC-YOLOv5s模型的综合检测性能好,能够在恶劣环境、多目标间相互遮挡严重及目标尺度跨度大导致检测精度降低的情况下表现出良好的实时检测能力且具有较好的鲁棒性。 展开更多
关键词 采掘工作面 多目标检测 fasternet网络 双向特征金字塔网络 YOLOv5s BiFPN ECIoU损失函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部