With the rapid development of the smart grid and increasingly integrated communication networks,power grids are facing serious cyber-security problems.This paper reviews existing studies on the impact of false data in...With the rapid development of the smart grid and increasingly integrated communication networks,power grids are facing serious cyber-security problems.This paper reviews existing studies on the impact of false data injection attacks on power systems from three aspects.First,false data injection can adversely affect economic dispatch by increasing the operational cost of the power system or causing sequential overloads and even outages.Second,attackers can inject false data to the power system state estimator,and this will prevent the operators from obtaining the true operating conditions of the system.Third,false data injection attacks can degrade the distributed control of distributed generators or microgrids inducing a power imbalance between supply and demand.This paper fully covers the potential vulnerabilities of power systems to cyber-attacks to help system operators understand the system vulnerability and take effective countermeasures.展开更多
This paper mainly investigates the security problem of a networked control system based on a Kalman filter.A false data injection attack scheme is proposed to only tamper the measurement output,and its stealthiness an...This paper mainly investigates the security problem of a networked control system based on a Kalman filter.A false data injection attack scheme is proposed to only tamper the measurement output,and its stealthiness and effects on system performance are analyzed under three cases of system knowledge held by an attacker and a defender.Firstly,it is derived that the proposed attack scheme is stealthy for a residual-based detector when the attacker and the defender hold the same accurate system knowledge.Secondly,it is proven that the proposed attack scheme is still stealthy even if the defender actively modifies the Kalman filter gain so as to make it different from that of the attacker.Thirdly,the stealthiness condition of the proposed attack scheme based on an inaccurate model is given.Furthermore,for each case,the instability conditions of the closed-loop system under attack are derived.Finally,simulation results are provided to test the proposed attack scheme.展开更多
文摘With the rapid development of the smart grid and increasingly integrated communication networks,power grids are facing serious cyber-security problems.This paper reviews existing studies on the impact of false data injection attacks on power systems from three aspects.First,false data injection can adversely affect economic dispatch by increasing the operational cost of the power system or causing sequential overloads and even outages.Second,attackers can inject false data to the power system state estimator,and this will prevent the operators from obtaining the true operating conditions of the system.Third,false data injection attacks can degrade the distributed control of distributed generators or microgrids inducing a power imbalance between supply and demand.This paper fully covers the potential vulnerabilities of power systems to cyber-attacks to help system operators understand the system vulnerability and take effective countermeasures.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.62173002, 61925303, 62088101, U20B2073, and 61720106011the Beijing Natural Science Foundation under Grant No. 4222045
文摘This paper mainly investigates the security problem of a networked control system based on a Kalman filter.A false data injection attack scheme is proposed to only tamper the measurement output,and its stealthiness and effects on system performance are analyzed under three cases of system knowledge held by an attacker and a defender.Firstly,it is derived that the proposed attack scheme is stealthy for a residual-based detector when the attacker and the defender hold the same accurate system knowledge.Secondly,it is proven that the proposed attack scheme is still stealthy even if the defender actively modifies the Kalman filter gain so as to make it different from that of the attacker.Thirdly,the stealthiness condition of the proposed attack scheme based on an inaccurate model is given.Furthermore,for each case,the instability conditions of the closed-loop system under attack are derived.Finally,simulation results are provided to test the proposed attack scheme.