期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于KCCA虚假邻点判别的非线性变量选择 被引量:8
1
作者 李太福 易军 +2 位作者 苏盈盈 胡文金 高婷 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第1期213-220,共8页
特征变量选择技术是非线性系统建模过程中降低信息冗余和提高精度的有效方法。提出一种结合核典型相关法(kernel canonical correlation analysis,KCCA)与虚假最近邻法的变量选择法。首先引入核方法,将非线性原始数据映射到线性空间,再... 特征变量选择技术是非线性系统建模过程中降低信息冗余和提高精度的有效方法。提出一种结合核典型相关法(kernel canonical correlation analysis,KCCA)与虚假最近邻法的变量选择法。首先引入核方法,将非线性原始数据映射到线性空间,再采用典型相关法有效合理地消除因子之间的多重共线性,受混沌相空间虚假最近邻点法的启示,通过计算原始数据在KCCA子空间中投影的距离,判断其对主导变量的解释能力,由此进行变量的选择。该方法用氢氰酸生产工艺工程中的非线性模型验证,并与全参数模型进行比较,结果显示该方法有良好的变量选择能力。因此,该研究为非线性系统建模的变量选择方法提供了一种新方法。 展开更多
关键词 非线性系统 建模 KCCA fnn 变量选择
下载PDF
基于ICA_FNN的软传感器建模过程原始特征选择 被引量:2
2
作者 李太福 苏盈盈 +2 位作者 易军 姚立忠 徐敏 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第4期736-742,共7页
针对软传感器建模过程中辅助变量通常是多因素的混杂信号,在原始特征空间很难进行原始特征约简的问题,提出一种结合独立成分分析(ICA)和虚假最近邻点法(FNN)的原始特征选择法。利用独立成分分析法(ICA)将原始特征空间的混杂信号映射到... 针对软传感器建模过程中辅助变量通常是多因素的混杂信号,在原始特征空间很难进行原始特征约简的问题,提出一种结合独立成分分析(ICA)和虚假最近邻点法(FNN)的原始特征选择法。利用独立成分分析法(ICA)将原始特征空间的混杂信号映射到新的独立特征子空间;然后再利用FNN计算每个原始特征剔除前后在独立特征子空间里的相似性测度,进而判断它对主导变量的影响能力,由此选择出原始特征。仿真结果表明,该方法具有优秀的原始特征选择能力。因此,该研究为选择出软传感器模型的原始特征提供了新方法。 展开更多
关键词 软传感器 特征子空间 独立成分分析 虚假最近邻点法 特征选择
下载PDF
基于SOM特征映射空间相似度判别的软传感器建模变量选择
3
作者 侯杰 李太福 +1 位作者 余德君 程杨 《运筹与模糊学》 2011年第1期16-21,共6页
针对软传感器建模中存在的信息冗余,提出一种基于自组织特征映射神经网络(Self-Organizing Feature Mapping,SOM)的变量选择方法。该方法借助SOM简单快速的特征映射能力对数据进行投影,采用虚假最近邻点法(False Nearest Neighbor,FNN)... 针对软传感器建模中存在的信息冗余,提出一种基于自组织特征映射神经网络(Self-Organizing Feature Mapping,SOM)的变量选择方法。该方法借助SOM简单快速的特征映射能力对数据进行投影,采用虚假最近邻点法(False Nearest Neighbor,FNN)计算某变量删减前后数据在SOM投影空间的相似度,通过相似度来判断其对主导变量的解释能力,由此进行变量的选择。实验结果表明该方法能有效的进行变量选择,为软传感器建模变量选择提供了一种新思路。 展开更多
关键词 变量选择 软传感器建模 SOM神经网络 特征空间 虚假最近邻点法
下载PDF
基于KPCA子空间虚假邻点判别的非线性建模的变量选择 被引量:18
4
作者 李太福 易军 +2 位作者 苏盈盈 胡文金 高婷 《机械工程学报》 EI CAS CSCD 北大核心 2012年第10期192-198,共7页
特征变量选择技术是非线性系统建模过程中降低信息冗余和提高精度的有效方法。提出一种结合核主成分分析法(Kernel principal components analysis,KPCA)与虚假最近邻点法(False nearest neighbor,FNN)的变量选择法。引入核方法,将非线... 特征变量选择技术是非线性系统建模过程中降低信息冗余和提高精度的有效方法。提出一种结合核主成分分析法(Kernel principal components analysis,KPCA)与虚假最近邻点法(False nearest neighbor,FNN)的变量选择法。引入核方法,将非线性原始数据映射到线性空间,再采用主成分分析法有效合理地消除因子之间的多重共线性,受混沌相空间虚假最近邻点法的启示,通过计算原始数据在KPCA子空间中投影的距离,判断其对主导变量的解释能力,由此进行变量的选择该方法用氢氰酸生产工艺工程中的非线性模型验证,并与全参数模型进行比较,结果显示该方法有良好的变量选择能力。因此,该研究为非线性系统建模的变量选择方法提供一种新方法。 展开更多
关键词 非线性系统 建模 核主成分分析法 虚假最近邻点法 变量选择
下载PDF
基于监督保局子空间虚假近邻准则的原始特征选择 被引量:1
5
作者 辜小花 李太福 +2 位作者 杨利平 易军 周伟 《光学精密工程》 EI CAS CSCD 北大核心 2014年第7期1921-1928,共8页
提出一种基于监督保局投影(SLPP)与虚假最近邻(FNN)准则的原始特征选择方法。该方法首先将非线性原始数据映射到监督保局子空间,消除样本数据输入变量之间的相关性;然后,利用虚假近邻点方法计算剔除每个原始特征前后输入样本在监督保局... 提出一种基于监督保局投影(SLPP)与虚假最近邻(FNN)准则的原始特征选择方法。该方法首先将非线性原始数据映射到监督保局子空间,消除样本数据输入变量之间的相关性;然后,利用虚假近邻点方法计算剔除每个原始特征前后输入样本在监督保局子空间里的相似性测度,获得每个原始特征对类别变量不同程度的解释力;最后,从全特征开始逐步剔除解释能力弱的特征进而获得多组特征子集,并建立最近邻分类器,识别率最高且含特征数最少的特征子集即为最优特征子集。采用合成数据对该方法进行了仿真验证,结果表明,该方法可获得与数据集本质分类特征吻合的最佳特征子集。将该方法应用于选择真实的低阻油气层特征,获得的最佳特征子集比全特征集合的特征数量减少了50%以上,分类识别率高出8%。结果显示该方法具有优秀的原始特征选择能力,是一种有效的非线性特征选择方法。 展开更多
关键词 监督保局投影 虚假近邻点 特征选择 模式分类 低阻油气层识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部