期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于稠密连接的通道混合式PCANet的低分辨率有遮挡人脸识别
1
作者 秦娥 何佳瑶 +2 位作者 刘银伟 朱娅妮 李小薪 《高技术通讯》 CAS 北大核心 2024年第6期602-615,共14页
针对低分辨率有遮挡人脸识别问题提出了基于稠密连接的通道混合式主成分分析网络(DCH-PCANet)。现有的PCANet模型的卷积层只使用了通道无关式卷积(CIC)。通道无关式卷积由于未考虑特征图在通道方向上的相关性,可以更好地凸显单个特征图... 针对低分辨率有遮挡人脸识别问题提出了基于稠密连接的通道混合式主成分分析网络(DCH-PCANet)。现有的PCANet模型的卷积层只使用了通道无关式卷积(CIC)。通道无关式卷积由于未考虑特征图在通道方向上的相关性,可以更好地凸显单个特征图的局部纹理特征,对于补偿因低分辨率、遮挡等因素导致的特征损失具有重要意义,但也会强化遮挡区域的特征,从而放大坏特征的影响范围;而通道相关式卷积(CDC)由于充分考虑了各特征图在通道方向上的相关性,可以较好地抑制坏特征的作用,形成较为稀疏的特征图。在PCANet中添加了基于通道相关式卷积的特征图提取分支,形成了通道混合式PCANet;并且引入了稠密连接,以充分利用低阶特征提升有遮挡图像识别的鲁棒性。针对如下4种数据集进行了实验:受控环境、真实遮挡和模拟低分辨率的人脸数据集(AR人脸数据集),非受控环境、真实遮挡和模拟低分辨率的人脸数据集(MFR2和PKUMasked-Face),非受控环境、真实遮挡和真实低分辨率的人脸数据集(自建数据集)。实验结果表明,与现有方法相比,所提出的基于稠密连接的通道混合式PCANet具更好的遮挡鲁棒性和低分辨率鲁棒性,可以作为前沿方法的有效补充,提升其识别性能。 展开更多
关键词 有遮挡人脸识别 主成分分析网络(PCANet) 通道相关式卷积(CDC) 稠密连接
下载PDF
基于图像深度先验和鲁棒马尔可夫随机场的有遮挡人脸识别
2
作者 李小薪 丁伟杰 +2 位作者 方怡 张远成 王琦晖 《计算机科学》 CSCD 北大核心 2024年第7期244-256,共13页
由遮挡所引发的测试数据和训练数据之间的差异,是人脸识别技术面临的重要挑战。现有的基于深度神经网络的有遮挡人脸识别方法大多需要使用大规模的有遮挡的人脸图像来训练网络模型。然而,现实世界中的任何外界物体都有可能成为遮挡,有... 由遮挡所引发的测试数据和训练数据之间的差异,是人脸识别技术面临的重要挑战。现有的基于深度神经网络的有遮挡人脸识别方法大多需要使用大规模的有遮挡的人脸图像来训练网络模型。然而,现实世界中的任何外界物体都有可能成为遮挡,有限的训练集数据很难穷尽所有的可能性,并且使用大规模的有遮挡人脸图像训练网络模型的做法与人类视觉机制是相违背的,人眼对于遮挡区域的感知在本质上与遮挡本身并没有关系,仅依赖于无遮挡的人脸图像。为了模拟人类视觉的遮挡检测机制,将图像深度先验和鲁棒马尔可夫随机场模型结合起来,构建基于小样本数据的遮挡检测模型DIP-rMRF,并提出了一致性零填充方法以有效利用DIP-rMRF的遮挡检测结果进行后续的人脸识别。在Extended Yale B,AR和LFW这3个人脸数据库上,针对VGGFace, LCNN,PCANet, SphereFace, InterpretFR,FROM这6种CNN模型的实验结果表明,DIP-rMRF能够有效地处理遮挡以及由极端光照所引发的“类遮挡”,从而极大提升现有的深度神经网络模型对有遮挡人脸识别的性能。 展开更多
关键词 有遮挡人脸识别 图像深度先验 鲁棒马尔可夫随机场 一致性零填充 结构误差度量
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部