Based on the lightning monitoring and FY4A satellite data in 12 periods during a thunderstorm,the relationship between lightning activity and four satellite digital products:blackbody radiation brightness temperature(...Based on the lightning monitoring and FY4A satellite data in 12 periods during a thunderstorm,the relationship between lightning activity and four satellite digital products:blackbody radiation brightness temperature(TBB),cloud top temperature(CTT),cloud top height(CTH)and cloud top pressure(CTP)was quantitatively analyzed.The following conclusions were obtained:(1)at lightning location,90.5%of TBB values were less than 214.1 K;88.5%of CTT values were less than 207.7 K;88.5%of CTP values were less than 137.7 hPa,and 88.5%of CTH values were greater than 14872 m.At location without lightning,92.5%of TBB values were greater than 214.1 K;90.4%of CTT values were greater than 207.7 K;89%of CTP values were greater than 137.7 hPa,and 92%of CTH values were less than 14872 m.(2)Lightning activity was concentrated in the cloud area with TBB between 190-210 K,CTT between 185-210 K,CTP between 50-150 hPa and CTH between 12-18 km.Lightning intensity was roughly positively correlated with TBB,CTT and CTP,and negatively correlated with CTH.With the increase of CTH,lightning intensity decreased.(3)TBB,CTT,CTP and CTH can well indicate the location and activity frequency of lightning in thunderstorm weather.展开更多
Fengyun-4A(FY-4A), the first of the Chinese next-generation geostationary meteorological satellites, launched in2016, offers several advances over the FY-2: more spectral bands, faster imaging, and infrared hypersp...Fengyun-4A(FY-4A), the first of the Chinese next-generation geostationary meteorological satellites, launched in2016, offers several advances over the FY-2: more spectral bands, faster imaging, and infrared hyperspectral measurements. To support the major objective of developing the prototypes of FY-4 science algorithms, two science product algorithm testbeds for imagers and sounders have been developed by the scientists in the FY-4 Algorithm Working Group(AWG). Both testbeds, written in FORTRAN and C programming languages for Linux or UNIX systems, have been tested successfully by using Intel/g compilers. Some important FY-4 science products, including cloud mask, cloud properties, and temperature profiles, have been retrieved successfully through using a proxy imager, Himawari-8/Advanced Himawari Imager(AHI), and sounder data, obtained from the Atmospheric Infra Red Sounder, thus demonstrating their robustness. In addition, in early 2016, the FY-4 AWG was developed based on the imager testbed—a near real-time processing system for Himawari-8/AHI data for use by Chinese weather forecasters.Consequently, robust and flexible science product algorithm testbeds have provided essential and productive tools for popularizing FY-4 data and developing substantial improvements in FY-4 products.展开更多
基于2018年中国东南沿海台风观测实例,以美国EOS/MODIS极轨气象卫星和日本第二代静止气象卫星Himawari-8为参照,对我国FY-4A静止气象卫星的云顶高度(Cloud Top Height,CTH)、云顶温度(Cloud Top Temperature,CTT)和云顶气压(Cloud Top P...基于2018年中国东南沿海台风观测实例,以美国EOS/MODIS极轨气象卫星和日本第二代静止气象卫星Himawari-8为参照,对我国FY-4A静止气象卫星的云顶高度(Cloud Top Height,CTH)、云顶温度(Cloud Top Temperature,CTT)和云顶气压(Cloud Top Pressure,CTP)三个产品的精度进行了对比,并分析了其在台风应用中的表现。结果表明:FY-4A卫星云顶参数产品与MODIS和Himawari-8同类产品均具有很好的线性相关关系,其中FY-4A与MODIS的相关系数最大(r≥0.98),平均值偏差最小,特别是在具有深厚密蔽云的台风中心和内雨带区,各卫星反演参数的精度更加接近,如在台风中心,FY-4A与Himawari-8的CTT、CTH和CTP分别相差0.78℃、30 m和0.2 hPa。FY-4A云顶参数产品质量可靠,与MODIS和Himawari-8等国际同类卫星精度相当,适合深厚的台风云系分析。偏差产生主要受透明薄卷云和小尺度云存在的影响,这与仪器的空间分辨率、不同仪器对云的探测能力以及云检测算法相关。展开更多
基金Supported by Guizhou Provincial Science and Technology Fund Project(QIANKEHEJICHU-ZK[2022]GENERAL245)。
文摘Based on the lightning monitoring and FY4A satellite data in 12 periods during a thunderstorm,the relationship between lightning activity and four satellite digital products:blackbody radiation brightness temperature(TBB),cloud top temperature(CTT),cloud top height(CTH)and cloud top pressure(CTP)was quantitatively analyzed.The following conclusions were obtained:(1)at lightning location,90.5%of TBB values were less than 214.1 K;88.5%of CTT values were less than 207.7 K;88.5%of CTP values were less than 137.7 hPa,and 88.5%of CTH values were greater than 14872 m.At location without lightning,92.5%of TBB values were greater than 214.1 K;90.4%of CTT values were greater than 207.7 K;89%of CTP values were greater than 137.7 hPa,and 92%of CTH values were less than 14872 m.(2)Lightning activity was concentrated in the cloud area with TBB between 190-210 K,CTT between 185-210 K,CTP between 50-150 hPa and CTH between 12-18 km.Lightning intensity was roughly positively correlated with TBB,CTT and CTP,and negatively correlated with CTH.With the increase of CTH,lightning intensity decreased.(3)TBB,CTT,CTP and CTH can well indicate the location and activity frequency of lightning in thunderstorm weather.
基金National Natural Science Foundation(41405035,41571348,and 41405038)China Meteorological Administration Special Public Welfare Research Fund(GYHY201406011 and GYHY201506074)
文摘Fengyun-4A(FY-4A), the first of the Chinese next-generation geostationary meteorological satellites, launched in2016, offers several advances over the FY-2: more spectral bands, faster imaging, and infrared hyperspectral measurements. To support the major objective of developing the prototypes of FY-4 science algorithms, two science product algorithm testbeds for imagers and sounders have been developed by the scientists in the FY-4 Algorithm Working Group(AWG). Both testbeds, written in FORTRAN and C programming languages for Linux or UNIX systems, have been tested successfully by using Intel/g compilers. Some important FY-4 science products, including cloud mask, cloud properties, and temperature profiles, have been retrieved successfully through using a proxy imager, Himawari-8/Advanced Himawari Imager(AHI), and sounder data, obtained from the Atmospheric Infra Red Sounder, thus demonstrating their robustness. In addition, in early 2016, the FY-4 AWG was developed based on the imager testbed—a near real-time processing system for Himawari-8/AHI data for use by Chinese weather forecasters.Consequently, robust and flexible science product algorithm testbeds have provided essential and productive tools for popularizing FY-4 data and developing substantial improvements in FY-4 products.
文摘基于2018年中国东南沿海台风观测实例,以美国EOS/MODIS极轨气象卫星和日本第二代静止气象卫星Himawari-8为参照,对我国FY-4A静止气象卫星的云顶高度(Cloud Top Height,CTH)、云顶温度(Cloud Top Temperature,CTT)和云顶气压(Cloud Top Pressure,CTP)三个产品的精度进行了对比,并分析了其在台风应用中的表现。结果表明:FY-4A卫星云顶参数产品与MODIS和Himawari-8同类产品均具有很好的线性相关关系,其中FY-4A与MODIS的相关系数最大(r≥0.98),平均值偏差最小,特别是在具有深厚密蔽云的台风中心和内雨带区,各卫星反演参数的精度更加接近,如在台风中心,FY-4A与Himawari-8的CTT、CTH和CTP分别相差0.78℃、30 m和0.2 hPa。FY-4A云顶参数产品质量可靠,与MODIS和Himawari-8等国际同类卫星精度相当,适合深厚的台风云系分析。偏差产生主要受透明薄卷云和小尺度云存在的影响,这与仪器的空间分辨率、不同仪器对云的探测能力以及云检测算法相关。