We demonstrate a multi-wavelength erbium-doped fiber laser (EDFL) using erbium gain and four-wave mixing (FWM) effect in a piece of erbium-doped fiber (EDF) with high erbium ion concentration. The EDF has a pump...We demonstrate a multi-wavelength erbium-doped fiber laser (EDFL) using erbium gain and four-wave mixing (FWM) effect in a piece of erbium-doped fiber (EDF) with high erbium ion concentration. The EDF has a pump absorption rate of 24.6 dB/m at 979 nm and is bi-directionally pumped by 980-nm laser diodes. FWM effect redistributes the energy of different oscillating lines and causes multi-wavelength operation. The laser generates more than 22 lines of optical comb with a line spacing of approximately 0.10 nm at the 1569-nm region using only 1.5-m-long EDF.展开更多
The scattering matrix theory has been developed to calculate the third-order nonlinear effect in sphere-grapheneslab structures. By designing structural parameters, we have demonstrated that the incident electromagnet...The scattering matrix theory has been developed to calculate the third-order nonlinear effect in sphere-grapheneslab structures. By designing structural parameters, we have demonstrated that the incident electromagnetic wave can be well confined in the graphene in these structures due to the formation of a bound state in the continuum(BIC) of radiation modes. Based on such a bound state, third-harmonic(TH) generation and four-wave mixing(FWM) have been studied. It is found that the efficiency of TH generation in monolayer graphene can be enhanced about 7 orders of magnitude. It is interesting that we can design structure parameters to make all beams(the pump beam, probe beam, and generated FWM signal) be BICs at the same time. In such a case, the efficiency of FWM in monolayer graphene can be enhanced about 9 orders of magnitude. Both the TH and FWM signals are sensitive to the wavelength, and possess high Q factors, which exhibit very good monochromaticity. By taking suitable BICs, the selective generation of TH and FWM signals for S-and P-polarized waves can also be realized,which is beneficial for the design of optical devices.展开更多
文摘We demonstrate a multi-wavelength erbium-doped fiber laser (EDFL) using erbium gain and four-wave mixing (FWM) effect in a piece of erbium-doped fiber (EDF) with high erbium ion concentration. The EDF has a pump absorption rate of 24.6 dB/m at 979 nm and is bi-directionally pumped by 980-nm laser diodes. FWM effect redistributes the energy of different oscillating lines and causes multi-wavelength operation. The laser generates more than 22 lines of optical comb with a line spacing of approximately 0.10 nm at the 1569-nm region using only 1.5-m-long EDF.
基金National Key R&D Program of China(2017YFA0303800)National Natural Science Foundation of China(NSFC)(11574031,61421001)
文摘The scattering matrix theory has been developed to calculate the third-order nonlinear effect in sphere-grapheneslab structures. By designing structural parameters, we have demonstrated that the incident electromagnetic wave can be well confined in the graphene in these structures due to the formation of a bound state in the continuum(BIC) of radiation modes. Based on such a bound state, third-harmonic(TH) generation and four-wave mixing(FWM) have been studied. It is found that the efficiency of TH generation in monolayer graphene can be enhanced about 7 orders of magnitude. It is interesting that we can design structure parameters to make all beams(the pump beam, probe beam, and generated FWM signal) be BICs at the same time. In such a case, the efficiency of FWM in monolayer graphene can be enhanced about 9 orders of magnitude. Both the TH and FWM signals are sensitive to the wavelength, and possess high Q factors, which exhibit very good monochromaticity. By taking suitable BICs, the selective generation of TH and FWM signals for S-and P-polarized waves can also be realized,which is beneficial for the design of optical devices.