LTE-A(Long Term Evolution-Advanced)以其优异的性能,成为未来4G的通信标准.然而LTE-A指标要求数字前端滤波器不仅要有很窄的过渡带,还要有很低的通带纹波,使数字前端滤波器的复杂度显著提升.采用基于频率屏蔽响应技术的FRM(frequency-...LTE-A(Long Term Evolution-Advanced)以其优异的性能,成为未来4G的通信标准.然而LTE-A指标要求数字前端滤波器不仅要有很窄的过渡带,还要有很低的通带纹波,使数字前端滤波器的复杂度显著提升.采用基于频率屏蔽响应技术的FRM(frequency-response masking)滤波器,通过对其插值因子、滤波长度和纹波幅度的优化,实现了满足LTE-A性能的低复杂度前端数字滤波器.仿真结果表明,在LTE-A标准下,当带宽为1.4MHz、3MHz、5MHz、10MHz、15MHz和20MHz时,FRM滤波器的复杂度分别为68、79、87、87、87和87.与传统FIR滤波器相比,此FRM滤波器复杂度降低约50%,性能也优于FIR滤波器.展开更多
In order to improve the design results for the reconfigurable frequency response masking FRM filters an improved design method based on second-order cone programming SOCP is proposed.Unlike traditional methods that se...In order to improve the design results for the reconfigurable frequency response masking FRM filters an improved design method based on second-order cone programming SOCP is proposed.Unlike traditional methods that separately design the proposed method takes all the desired designing modes into consideration when designing all the subfilters. First an initial solution is obtained by separately designing the subfilters and then the initial solution is updated by iteratively solving a SOCP problem. The proposed method is evaluated on a design example and simulation results demonstrate that jointly designing all the subfilters can obtain significantly lower minimax approximation errors compared to the conventional design method.展开更多
文摘LTE-A(Long Term Evolution-Advanced)以其优异的性能,成为未来4G的通信标准.然而LTE-A指标要求数字前端滤波器不仅要有很窄的过渡带,还要有很低的通带纹波,使数字前端滤波器的复杂度显著提升.采用基于频率屏蔽响应技术的FRM(frequency-response masking)滤波器,通过对其插值因子、滤波长度和纹波幅度的优化,实现了满足LTE-A性能的低复杂度前端数字滤波器.仿真结果表明,在LTE-A标准下,当带宽为1.4MHz、3MHz、5MHz、10MHz、15MHz和20MHz时,FRM滤波器的复杂度分别为68、79、87、87、87和87.与传统FIR滤波器相比,此FRM滤波器复杂度降低约50%,性能也优于FIR滤波器.
基金The National Natural Science Foundation of China(No.61231002,61273266,61375028)the Ph.D.Programs Foundation of Ministry of Education of China(No.20110092130004)
文摘In order to improve the design results for the reconfigurable frequency response masking FRM filters an improved design method based on second-order cone programming SOCP is proposed.Unlike traditional methods that separately design the proposed method takes all the desired designing modes into consideration when designing all the subfilters. First an initial solution is obtained by separately designing the subfilters and then the initial solution is updated by iteratively solving a SOCP problem. The proposed method is evaluated on a design example and simulation results demonstrate that jointly designing all the subfilters can obtain significantly lower minimax approximation errors compared to the conventional design method.