Inversion of droplet size distribution in two-phase flow from light scattering has been considered involved because it is in general reduced to the solution of Fredholm integral equation of the first kind that was alw...Inversion of droplet size distribution in two-phase flow from light scattering has been considered involved because it is in general reduced to the solution of Fredholm integral equation of the first kind that was always ill-posed. By using the Rosin-Rammler distributiona priori as the particulate size distribution model in the liquid-gas two-phase flow, a method via the solution of a two-parameter nonlinear programming problem to determine the droplet size distribution has been developed. A measurement system based on the technique is designed and applied in the shock test of blades of steam turbine. 100-hours continuous monitoring of the droplets in the liquid-gas two-phase flow of 8.0 Pa and 120 °C was performed and the details of the experiments are given out. It is shown that the technique is simple and efficient for in-situ real time measuring droplets in the liquid-gas two-phase flow.展开更多
Geometrical optics and the Monte Carlo method are very flexible in dealing with the interaction of light with non-spherical particles, but usually diffraction is not considered. To cover this gap, the Heisenberg Uncer...Geometrical optics and the Monte Carlo method are very flexible in dealing with the interaction of light with non-spherical particles, but usually diffraction is not considered. To cover this gap, the Heisenberg Uncertainty Monte Carlo (HUMC) model is applied to calculate separately the diffraction of a ray or a photon. In this paper, we report an improvement of the HUMC model by specifying the phase of the photon subject to the Fraunhofer diffraction condition. After validating the model by comparing its results with analytical results for apertures of simple shapes, the HUMC model is then applied in simulations of Fraunhofer diffraction by apertures of complex shapes, such as those composed of one or two elliptical openings. We have shown that the diffracted intensity distributions of simple apertures obtained by the HUMC model are in good agreement with the results calculated from analytical expressions. The simulations of diffraction by apertures composed of two square or elliptical openings prove that the HUMC model is a powerful and flexible too] for predicting the Fraunhofer diffraction by a complex optical system.展开更多
The intensity distribution in Fresnel diffraction through a slit includes numerous small fluctuations referred to as ripples. These ripples make the modelling of the intensity distribution complicated. In this study, ...The intensity distribution in Fresnel diffraction through a slit includes numerous small fluctuations referred to as ripples. These ripples make the modelling of the intensity distribution complicated. In this study, we examine the characteristics of the Fresnel diffraction intensity distribution to deduce the rule for the peak position and then propose two types of quantum-mathematical models to obtain the distance between the edge and the peak point. The analysis and simulation indicate that the error in the models is below 0.50 μm. The models can also be used to detect the edges of a diffraction object, and we conduct several experiments to measure the slit width. The experimental results reveal that the repetition accuracy of the method can reach 0.23 μm.展开更多
Full gap closing is a prerequisite for hosting Majorana zero modes in Josephson junctions on the surface of topological insulators.Previously,we have observed direct experimental evidence of gap closing in Josephson j...Full gap closing is a prerequisite for hosting Majorana zero modes in Josephson junctions on the surface of topological insulators.Previously,we have observed direct experimental evidence of gap closing in Josephson junctions constructed on Bi2Te3 surface.In this paper we report further investigations on the position dependence of gap closing as a function of magnetic flux in single Josephson junctions constructed on Bi2Te3 surface.展开更多
A highly efficient laser system output at the H-13 Fraunhofer line of 486.1 nm has been demonstrated. A high pulse energy single-frequency hybrid 1064 nm master oscillator power amplifier was frequency-tripled to achi...A highly efficient laser system output at the H-13 Fraunhofer line of 486.1 nm has been demonstrated. A high pulse energy single-frequency hybrid 1064 nm master oscillator power amplifier was frequency-tripled to achieve 355 nm laser pulses, which acted as the pmnp source of the beta barium borate nanosecond pulse optical para- metric oscillator. With pump energy of 190 mJ, the laser system generated a maximum output of 62 mJ blue laser pulses at 486.1 nm, corresponding to conversion efficiency of 32.6%. The laser spectrum width was measured to be around 0.1 ran, being in conformity with the spectrum width of the solar Fraunhofer line.展开更多
Acoustic vortex (AV) beam is triggering the significant research interest in information and communication sciences due to its infinite and mutual orthogonal orbital angular momentums (OAMs). Therefore, measuring the ...Acoustic vortex (AV) beam is triggering the significant research interest in information and communication sciences due to its infinite and mutual orthogonal orbital angular momentums (OAMs). Therefore, measuring the topological charges of an AV beams become a task with great significance. In this work, we present a Fraunhofer diffraction (FD) pattern of an AV beam that can be used to quantitatively detect the OAMs of AV beams. We both theoretically and numerically investigate the FD patterns of AV beams passing through a multipoint interferometer (MPI). It is demonstrated that the topological charges of the AV beams can be determined from the interference intensity patterns. The proposed method may pave the way to the practical applications of AV beams.展开更多
文摘Inversion of droplet size distribution in two-phase flow from light scattering has been considered involved because it is in general reduced to the solution of Fredholm integral equation of the first kind that was always ill-posed. By using the Rosin-Rammler distributiona priori as the particulate size distribution model in the liquid-gas two-phase flow, a method via the solution of a two-parameter nonlinear programming problem to determine the droplet size distribution has been developed. A measurement system based on the technique is designed and applied in the shock test of blades of steam turbine. 100-hours continuous monitoring of the droplets in the liquid-gas two-phase flow of 8.0 Pa and 120 °C was performed and the details of the experiments are given out. It is shown that the technique is simple and efficient for in-situ real time measuring droplets in the liquid-gas two-phase flow.
文摘Geometrical optics and the Monte Carlo method are very flexible in dealing with the interaction of light with non-spherical particles, but usually diffraction is not considered. To cover this gap, the Heisenberg Uncertainty Monte Carlo (HUMC) model is applied to calculate separately the diffraction of a ray or a photon. In this paper, we report an improvement of the HUMC model by specifying the phase of the photon subject to the Fraunhofer diffraction condition. After validating the model by comparing its results with analytical results for apertures of simple shapes, the HUMC model is then applied in simulations of Fraunhofer diffraction by apertures of complex shapes, such as those composed of one or two elliptical openings. We have shown that the diffracted intensity distributions of simple apertures obtained by the HUMC model are in good agreement with the results calculated from analytical expressions. The simulations of diffraction by apertures composed of two square or elliptical openings prove that the HUMC model is a powerful and flexible too] for predicting the Fraunhofer diffraction by a complex optical system.
基金Project supported by the National Natural Science Foundation of China(Grant No.61475018)
文摘The intensity distribution in Fresnel diffraction through a slit includes numerous small fluctuations referred to as ripples. These ripples make the modelling of the intensity distribution complicated. In this study, we examine the characteristics of the Fresnel diffraction intensity distribution to deduce the rule for the peak position and then propose two types of quantum-mathematical models to obtain the distance between the edge and the peak point. The analysis and simulation indicate that the error in the models is below 0.50 μm. The models can also be used to detect the edges of a diffraction object, and we conduct several experiments to measure the slit width. The experimental results reveal that the repetition accuracy of the method can reach 0.23 μm.
基金Project supported by the National Basic Research Program of China(Grant Nos.2009CB929101 and 2011CB921702)the National Natural Science Foundation of China(Grant Nos.91221203,11174340,11174357,91421303,and 11527806)the Strategic Priority Research Program B of the Chinese Academy of Sciences(Grant No.XDB07010100)
文摘Full gap closing is a prerequisite for hosting Majorana zero modes in Josephson junctions on the surface of topological insulators.Previously,we have observed direct experimental evidence of gap closing in Josephson junctions constructed on Bi2Te3 surface.In this paper we report further investigations on the position dependence of gap closing as a function of magnetic flux in single Josephson junctions constructed on Bi2Te3 surface.
基金supported by the National Key Research and Development Program of China(No.2016YFC1400902)the National Key Scientific Instrument and Equipment Development Project(No.2013YQ120343)+1 种基金the Scientific Innovation Fund of Chinese Academy of Sciences(No.CXJJ-16S014)the Development Program of China(No.2014AA093301)
文摘A highly efficient laser system output at the H-13 Fraunhofer line of 486.1 nm has been demonstrated. A high pulse energy single-frequency hybrid 1064 nm master oscillator power amplifier was frequency-tripled to achieve 355 nm laser pulses, which acted as the pmnp source of the beta barium borate nanosecond pulse optical para- metric oscillator. With pump energy of 190 mJ, the laser system generated a maximum output of 62 mJ blue laser pulses at 486.1 nm, corresponding to conversion efficiency of 32.6%. The laser spectrum width was measured to be around 0.1 ran, being in conformity with the spectrum width of the solar Fraunhofer line.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61775050 and 11804073)the Natural Science Foundation of Anhui Province, China (Grant Nos. 1808085MF188 and 1808085QA21)the Fundamental Research Funds for the Central Universities, China (Grant No. PA2019GDZC0098).
文摘Acoustic vortex (AV) beam is triggering the significant research interest in information and communication sciences due to its infinite and mutual orthogonal orbital angular momentums (OAMs). Therefore, measuring the topological charges of an AV beams become a task with great significance. In this work, we present a Fraunhofer diffraction (FD) pattern of an AV beam that can be used to quantitatively detect the OAMs of AV beams. We both theoretically and numerically investigate the FD patterns of AV beams passing through a multipoint interferometer (MPI). It is demonstrated that the topological charges of the AV beams can be determined from the interference intensity patterns. The proposed method may pave the way to the practical applications of AV beams.