期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
深度学习的多尺度多人目标检测方法研究 被引量:11
1
作者 刘云 钱美伊 +1 位作者 李辉 王传旭 《计算机工程与应用》 CSCD 北大核心 2020年第6期172-179,共8页
深度学习具有自主学习目标特征、识别率高、鲁棒性强等优点,当前基于深度学习的人体目标检测方法不能有效地适应目标的尺度变化。针对上述问题,提出多尺度多人的目标检测方法,将FPN特征金字塔分别与Faster R-CNN网络的两个阶段结合,同时... 深度学习具有自主学习目标特征、识别率高、鲁棒性强等优点,当前基于深度学习的人体目标检测方法不能有效地适应目标的尺度变化。针对上述问题,提出多尺度多人的目标检测方法,将FPN特征金字塔分别与Faster R-CNN网络的两个阶段结合,同时,平衡RPN阶段产生的正负锚点的数量比例,并采用了更适合的锚点纵横比,对原始网络进行了一系列的优化。在标准数据集PETS 2009、Caltech和INRIA上的实验结果表明,提出的检测方法性能优于主流深度学习目标检测算法。 展开更多
关键词 深度学习 多尺度多人目标检测 Faster R-CNN网络 fpn网络 RPN网络 锚点
下载PDF
基于SSD-MobileNetv2和FPN的人脸检测 被引量:2
2
作者 康晓凤 厉丹 《电子器件》 CAS 北大核心 2023年第2期455-462,共8页
随着人工智能技术的不断发展,人脸检测与识别技术以其广泛的应用性成为学术研究的重点。提出了SSD-MobileNetv2-FPN人脸检测模型,首先用轻量级的MobileNetv2代替SSD中的VGG-16主干网络,减少模型训练参数以提高模型的检测速度,然后引入FP... 随着人工智能技术的不断发展,人脸检测与识别技术以其广泛的应用性成为学术研究的重点。提出了SSD-MobileNetv2-FPN人脸检测模型,首先用轻量级的MobileNetv2代替SSD中的VGG-16主干网络,减少模型训练参数以提高模型的检测速度,然后引入FPN网络提取多尺度特征信息使得模型更利于小目标人脸的检测,增加检测精度。最后引入Focal loss损失函数解决模型在训练过程中出现前景和背景类分布不平衡问题,提高模型性能。实验表明上述模型在Pascal Voc 2012人脸部分数据集中准确率为92.5%,且处理速度快,满足实时需求。 展开更多
关键词 MobileNetv2网络 fpn网络 SSD模型 人脸检测
下载PDF
改进的Mask R-CNN算法在人额部区域实例分割任务的应用研究
3
作者 周永旭 《信息与电脑》 2021年第12期65-68,共4页
针对遮盖区域卷积神经网络(Mask Regional Convolutional neural network,Mask R-CNN)在人额部区域分割任务中丢失部分目标的问题,本文改进了Mask R-CNN算法原有的特征金字塔网络(Feature Pyramid Networks,FPN)结构。为了更好地利用图... 针对遮盖区域卷积神经网络(Mask Regional Convolutional neural network,Mask R-CNN)在人额部区域分割任务中丢失部分目标的问题,本文改进了Mask R-CNN算法原有的特征金字塔网络(Feature Pyramid Networks,FPN)结构。为了更好地利用图像中反映出的特征信息,首先将原Mask R-CNN中的高维特征信息进行融合,其次,进行ROI Align操作生成人额部的Mask;最后,仿照COCO数据集,从“LIPCIHPinstance-level_human_parsing”数据集中选取带有人脸额部区域的随机场景照片,自建人额部数据集。实验结果表明改进后的FPN网络模型有着更好的目标分割能力,实验效果更好。 展开更多
关键词 Mask R-CNN 卷积神经网络 fpn网络 人额部分割数据集
下载PDF
改进轻量化VTG-YOLOv7-tiny的钢材表面缺陷检测
4
作者 梁礼明 龙鹏威 +1 位作者 冯耀 卢宝贺 《光学精密工程》 EI CAS CSCD 北大核心 2024年第8期1227-1240,共14页
针对钢材表面缺陷形态多样、结构复杂且存在检测目标漏检现象和算法参数量过大等问题,提出一种轻量化VTG-YOLOv7-tiny的钢材缺陷检测算法。该方法一是设计VoVGA-FPN网络,以减少信息传递过程中的丢失,增强网络特征融合能力;二是构建三重... 针对钢材表面缺陷形态多样、结构复杂且存在检测目标漏检现象和算法参数量过大等问题,提出一种轻量化VTG-YOLOv7-tiny的钢材缺陷检测算法。该方法一是设计VoVGA-FPN网络,以减少信息传递过程中的丢失,增强网络特征融合能力;二是构建三重坐标注意力机制,提升模型对空间和通道信息的特征提取能力;三是引入鬼影混洗卷积,在提高精度的同时降低模型参数量和计算量;四是增加大目标检测层,改善特征图中部分缺陷占比较大,导致检测精度低的问题。在NEU-DET和Severstal钢材缺陷数据集进行实验验证,改进后算法与原模型相比,mAP分别提升5.7%和8.5%;参数量和计算量分别降低0.61 M和4.2 G;精确度和召回率分别提升7.1%,1.8%和8.9%,7.0%。实验结果表明,改进后的算法更好地平衡了检测精度和轻量化,为边缘终端设备提供了参考。 展开更多
关键词 缺陷检测 轻量化YOLOv7-tiny VoVGA-fpn网络 三重坐标注意力 鬼影混洗卷积
下载PDF
改进GBS-YOLOv7t的钢材表面缺陷检测
5
作者 梁礼明 龙鹏威 +1 位作者 卢宝贺 李仁杰 《光电工程》 CAS CSCD 北大核心 2024年第5期54-65,共12页
针对钢材表面缺陷区域小目标居多,现有大部分方法无法均衡检测精度和速度的问题,提出一种基于YOLOv7-tiny的钢材表面缺陷检测算法(GBS-YOLOv7t)。该方法一是设计GAC-FPN网络,采用渐进和跨层的方式充分融合目标语义信息,以改善传统特征... 针对钢材表面缺陷区域小目标居多,现有大部分方法无法均衡检测精度和速度的问题,提出一种基于YOLOv7-tiny的钢材表面缺陷检测算法(GBS-YOLOv7t)。该方法一是设计GAC-FPN网络,采用渐进和跨层的方式充分融合目标语义信息,以改善传统特征金字塔中存在限制信息流问题;二是嵌入双层路由注意力模块,使模型具备动态查询和感知稀疏性能力,以提高对小目标的检测精度;三是引入SIoU损失函数,提升模型训练和推理能力,增强网络鲁棒性。最后在公共数据集NEU-DET进行实验验证,mAP和精确度分别为72.9%和69.9%,相较于YOLOv7-tiny原模型分别提升4.2%和8.5%;FPS达到104.1帧,具有较强实时性;与其他检测算法相比,GBS-YOLOv7t算法对钢材表面区域小目标的检测更有效,实验表明改进后的算法能够更好地均衡检测精度和速度。 展开更多
关键词 缺陷检测 YOLOv7-tiny GAC-fpn网络 双层路由注意力 SIoU
下载PDF
复杂场景下深度表示的SAR船舶目标检测算法 被引量:4
6
作者 袁国文 张彩霞 +2 位作者 杨阳 张文生 白江波 《计算机工程与应用》 CSCD 北大核心 2022年第2期289-294,共6页
雷达图像目标检测是国家海洋军事和经济发展的重点研究领域。与被动成像的光学雷达相比,合成孔径雷达(synthetic aperture radar,SAR)由于其高分辨率、全天候、全天时、主动式等特点,成为20世纪以来多国雷达研究的重要组成部分。图像目... 雷达图像目标检测是国家海洋军事和经济发展的重点研究领域。与被动成像的光学雷达相比,合成孔径雷达(synthetic aperture radar,SAR)由于其高分辨率、全天候、全天时、主动式等特点,成为20世纪以来多国雷达研究的重要组成部分。图像目标检测是雷达图像解译的基础。提出一种复杂场景下深度表示的SAR船舶目标检测算法,针对SAR图像目标检测模型无法专注困难样本以及解决FPN多尺度金字塔融合的问题,提出将Libra R-CNN网络与NAS-FPN特征提取网络相结合。其中Libra R-CNN网络在采样、特征、目标三种水平分别具有先进的IoU平衡采样、平衡特征金字塔、平衡L1损失方法,同时将Libra R-CNN模型中的FPN特征提取网络替换为在COCO数据集中借助神经架构搜索(neural architecture search,NAS)方法形成的7层NAS-FPN网络。模型最终在SAR船舶数据集中进行了对比实验,与原先的NAS-FPN网络相比,组合后的网络平均精度提高了4.4个百分点,证明了模型融合后的有效性。 展开更多
关键词 合成孔径雷达(SAR)图像 目标检测 Libra R-CNN网络 NAS-fpn网络
下载PDF
基于改进FasterRCNN的配网架空线路异常状态检测 被引量:9
7
作者 王超洋 樊绍胜 +2 位作者 刘铮 李彬 张巍 《电力学报》 2019年第4期322-329,共8页
随着无人机巡线技术的不断发展,现已广泛运用在输电线路运维工作中,但仍需由人工判断线路异常状态类型,检测准确率极易受环境影响,现有智能检测技术检测速度慢、检测手段单一。针对提高异常状态智能检测效率问题,提出基于融合FPN结构的F... 随着无人机巡线技术的不断发展,现已广泛运用在输电线路运维工作中,但仍需由人工判断线路异常状态类型,检测准确率极易受环境影响,现有智能检测技术检测速度慢、检测手段单一。针对提高异常状态智能检测效率问题,提出基于融合FPN结构的FasterRCNN深度学习在线异常状态检测系统。首先采用ResNet50卷积神经网络对原图逐层进行特征提取,得到最高层特征图;再对该特征图使用反池化法进行上采样得到多张低特征图,并将原各层特征图与新各层特征图对应融合;最后将融合后的全部特征图输入RPN层进行二分类与边框回归,经过ROIpooling层后得到异常点检测结果。经过对配网设备及异常状态检测数据集的检测验证,所提出的网络结构对比原FasterRCNN网络,不仅具有更高的识别正确率,且可以有效识别变压器等小目标物体。 展开更多
关键词 架空线路异常状态智能检测 fpn神经网络 FasterRCNN神经网络 高低特征共享
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部