由于可再生能源发电系统固有的不确定性以及日益扩大的电网规模和区域内电站结构的复杂度对电力系统稳定运行造成影响。抽水蓄能电站作为一种调频资源,已成为区域电网负荷频率控制(load frequency control,LFC)的重要手段之一。由此,开...由于可再生能源发电系统固有的不确定性以及日益扩大的电网规模和区域内电站结构的复杂度对电力系统稳定运行造成影响。抽水蓄能电站作为一种调频资源,已成为区域电网负荷频率控制(load frequency control,LFC)的重要手段之一。由此,开展了抽水蓄能电站的区域LFC研究,搭建了考虑死区和发电速度约束等非线性因素下的两区域再热式汽轮机组LFC模型,设计了一个分数阶PID(fractional order PID,FOPID)控制器,利用改进Oustaloup算法实现分数阶微分算子的近似并与传统的PID控制器进行比较。仿真结果表明,文中提出的FOPID策略在控制含有非线性环节的系统时能达到更好的控制效果,表现出较强的鲁棒稳定性。对于抽水蓄能电站参与的负荷频率控制,能够缩短频率恢复时间,使二次调频的动态性能得到很大提升。展开更多
应用于孤岛型微电网以实现频率控制功能的传统控制器多为分数阶PID(fractional order PID,FOPID)控制器及模糊分数阶PID(fuzzy fractional order PID,FFOPID)控制器,二者的控制性能均存在局限性。针对这一问题,设计了一种变论域混合FFO...应用于孤岛型微电网以实现频率控制功能的传统控制器多为分数阶PID(fractional order PID,FOPID)控制器及模糊分数阶PID(fuzzy fractional order PID,FFOPID)控制器,二者的控制性能均存在局限性。针对这一问题,设计了一种变论域混合FFOPID控制器,用于提高孤岛微电网的频率控制性能。通过对比FOPID、FFOPID以及变论域混合FFOPID3种控制器作用时的不同效果,证明了变论域混合FFOPID控制器相比其他控制器对于孤岛微电网的频率控制有着更好的控制性能。同时考虑了反馈信号受到测量噪声干扰时对控制器的控制性能产生影响进而使得孤岛微电网频率波动增大的情况,并针对此问题使用了动态数据校正(dynamic datareconciliation,DDR)滤波技术。通过对比时域仿真中FOPID、FFOPID以及变论域混合FFOPID控制器各自作用时孤岛微电网频率偏差的输出结果,验证了DDR滤波技术对孤岛微电网的频率控制的显著效果。展开更多
In this paper, a fractional order proportional integral derivative (FOPID) controller for multiarea automatic generation control (AGC) scheme has been designed. FOPID controller has five parameters and provides tw...In this paper, a fractional order proportional integral derivative (FOPID) controller for multiarea automatic generation control (AGC) scheme has been designed. FOPID controller has five parameters and provides two additional degrees of flexibility in comparison to a proportional integral derivative (PID) controller. The optimal values of parameters of FOPID controller have been determined using Big Bang Big Crunch (BBBC) search algorithm. The designed controller regulates real power output of generators to achieve the best dynamic response of frequency and tie-line power on a load perturbation. The complete scheme for designing of the controllers has been developed and demonstrated on multiarea deregulated power system. The performance of the designed FOPID controllers has been compared with the optimally tuned PID controllers. It is observed from the results that the FOPID controller shows a considerable improvement in the performance as compared to the conventional PID controller.展开更多
Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-...Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-derivative(FOPID)controller that utilizes a modified elite opposition-based artificial hummingbird algorithm(m-AHA)for optimal parameter tuning.Our approach outperforms existing optimization techniques on benchmark functions,and we demonstrate its effectiveness in controlling cruise control systems with increased flexibility and precision.Our study contributes to the advancement of autonomous vehicle technology by introducing a novel and efficient method for FOPID controller design that can enhance the driving experience while ensuring safety and reliability.We highlight the significance of our findings by demonstrating how our approach can improve the performance,safety,and reliability of autonomous vehicles.This study’s contributions are particularly relevant in the context of the growing demand for autonomous vehicles and the need for advanced control techniques to ensure their safe operation.Our research provides a promising avenue for further research and development in this area.展开更多
In this paper,three tuning methods of the integer order proportional integral derivative(IOPID)controller,the fuzzy proportional integral derivative(FPID)controller and the fractional order proportional integral deriv...In this paper,three tuning methods of the integer order proportional integral derivative(IOPID)controller,the fuzzy proportional integral derivative(FPID)controller and the fractional order proportional integral derivative(FOPID)controller for high order system are presented respectively.Both IOPID controller and FOPID controller designed by the two tuning methods can satisfy all the three specifications proposed,which can guarantee the desired control performance and the robustness of the high order system to the loop gain variations.From the simulation results,the three controllers meet the dynamic performance requirements of high order system.Moreover,the FOPID controller,with the shortest overshoot and adjustment time,outperforms the IOPID controller and the FPID controller for the high order system.展开更多
In this paper,load frequency control is performed for a two-area power system incorporating a high penetration of renewable energy sources.A droop controller for a type 3 wind turbine is used to extract the stored kin...In this paper,load frequency control is performed for a two-area power system incorporating a high penetration of renewable energy sources.A droop controller for a type 3 wind turbine is used to extract the stored kinetic energy from the rotating masses during sudden load disturbances.An auxiliary storage controller is applied to achieve effec-tive frequency response.The coot optimization algorithm(COA)is applied to allocate the optimum parameters of the fractional-order proportional integral derivative(FOPID),droop and auxiliary storage controllers.The fitness function is represented by the summation of integral square deviations in tie line power,and Areas 1 and 2 frequency errors.The robustness of the COA is proven by comparing the results with benchmarked optimizers including:atomic orbital search,honey badger algorithm,water cycle algorithm and particle swarm optimization.Performance assessment is confirmed in the following four scenarios:(i)optimization while including PID controllers;(ii)optimization while including FOPID controllers;(iii)validation of COA results under various load disturbances;and(iv)validation of the proposed controllers under varying weather conditions.展开更多
This paper proposes an improved sine-cosine algorithm(ISCA)based 2-DOF-PID controller for load frequency control.A three-area test system is built for study,while some physical constraints(nonlinearities)are considere...This paper proposes an improved sine-cosine algorithm(ISCA)based 2-DOF-PID controller for load frequency control.A three-area test system is built for study,while some physical constraints(nonlinearities)are considered for the investigation of a realistic power system.The proposed method is used as the parameter optimizer of the LFC control-ler in different scenarios.The 2-DOF-PID controllers are used because of their capability of fast disturbance rejection without significant increase of overshoot in set-point tracking.The 2-DOF-PID controllers’efficacy is observed by examining the responses with the outcomes obtained with PID and FOPID controllers.The simulation results with the suggested scheme are correlated with some of the existing algorithms,such as SCA,SSA,ALO,and PSO in three dif-ferent scenarios,i.e.,a disturbance in two areas,in three areas,and in the presence of physical constraints.In addition,the study is extended to a four-area power system.Statistical analysis is performed using the Wilcoxon Sign Rank Test(WSRT)on 20 independent runs.This confirms the supremacy of the proposed method.展开更多
The robust stability study of the classic Smith predictor-based control system for uncertain fractional-order plants with interval time delays and interval coefficients is the emphasis of this work.Interval uncertaint...The robust stability study of the classic Smith predictor-based control system for uncertain fractional-order plants with interval time delays and interval coefficients is the emphasis of this work.Interval uncertainties are a type of parametric uncertainties that cannot be avoided when modeling real-world plants.Also,in the considered Smith predictor control structure it is supposed that the controller is a fractional-order proportional integral derivative(FOPID)controller.To the best of the authors'knowledge,no method has been developed until now to analyze the robust stability of a Smith predictor based fractional-order control system in the presence of the simultaneous uncertainties in gain,time-constants,and time delay.The three primary contributions of this study are as follows:ⅰ)a set of necessary and sufficient conditions is constructed using a graphical method to examine the robust stability of a Smith predictor-based fractionalorder control system—the proposed method explicitly determines whether or not the FOPID controller can robustly stabilize the Smith predictor-based fractional-order control system;ⅱ)an auxiliary function as a robust stability testing function is presented to reduce the computational complexity of the robust stability analysis;andⅲ)two auxiliary functions are proposed to achieve the control requirements on the disturbance rejection and the noise reduction.Finally,four numerical examples and an experimental verification are presented in this study to demonstrate the efficacy and significance of the suggested technique.展开更多
This paper proposes a low complexity control scheme for voltage control of a dynamic voltage restorer(DVR)in a three-phase system.The control scheme employs the fractional order,proportional-integral-derivative(FOPID)...This paper proposes a low complexity control scheme for voltage control of a dynamic voltage restorer(DVR)in a three-phase system.The control scheme employs the fractional order,proportional-integral-derivative(FOPID)controller to improve on the DVR performance in order to enhance the power quality in terms of the response time,steady-state error and total harmonic distortion(THD).The result obtained was compared with fractional order,proportionalintegral(FOPI),proportional-integral-derivative(PID)and proportional-integral(PI)controllers in order to show the effectiveness of the proposed DVR control scheme.A water cycle optimization algorithm(WCA)was utilized to find the optimal set for all the controller gains.They were used to solve four power quality issues;balanced voltage sag,balanced voltage swell,unbalanced voltage sag,and unbalanced voltage swell.It showed that one set of controller gain obtained from the WCA could solve all the power quality issues while the others in the literature needed an individual set of optimal gain for each power quality problem.To prove the concept,the proposed DVR algorithm was simulated in the MATLAB/Simulink software and the results revealed that the four optimal controllers can compensate for all the power quality problems.A comparative analysis of the results in various aspects of their dynamic response and%THD was discussed and analyzed.It was found that PID controller yields the most rapid performance in terms of average response time while FOPID controller yields the best performance in term of average%steady-state error.FOPI controller was found to provide the lowest THD percentage in the average%THD.FOPID did not differ much in average response from the PID and average%THD from FOPI;however,FOPID provided the most outstanding average steady-state error.According to the CBMA curve,the dynamic responses of all controllers fall in the acceptable power quality area.The total harmonic distortion(THD)of the compensated load voltage from all the controllers were within the 8%展开更多
In this paper, a new algorithm which integrates the powerful firefly Mgorithm (FA) and the ant colony optimization (ACO) has been used in tracking control of ship steering for optimization of fractional-order prop...In this paper, a new algorithm which integrates the powerful firefly Mgorithm (FA) and the ant colony optimization (ACO) has been used in tracking control of ship steering for optimization of fractional-order proportional-integral-derivative (FOPID) controller gains. Particle swarm optimization (PSO) algorithm is also used to optimize FOPID controllers, and their performances are compared. It is found that FA optimized FOPID controller gives better performance than others. Sensitivity analysis has been carried out to see the robustness of optimum FOPID gains obtained at nominal conditions to wide changes in system parameters, and the optimum FOPID gains need not be reset for wide changes in system parameters.展开更多
Smart grids and their technologies transform the traditional electric grids to assure safe,secure,cost-effective,and reliable power transmission.Non-linear phenomena in power systems,such as voltage collapse and oscil...Smart grids and their technologies transform the traditional electric grids to assure safe,secure,cost-effective,and reliable power transmission.Non-linear phenomena in power systems,such as voltage collapse and oscillatory phenomena,can be investigated by chaos theory.Recently,renewable energy resources,such as wind turbines,and solar photovoltaic(PV)arrays,have been widely used for electric power generation.The design of the controller for the direct Current(DC)converter in a PV system is performed based on the linearized model at an appropriate operating point.However,these operating points are everchanging in a PV system,and the design of the controller is usually accomplished based on a low irradiance level.This study designs a fractional-order proportional-integrated-derivative(FOPID)controller using deep learning(DL)with quasi-oppositional Archimedes Optimization algorithm(FOPID-QOAOA)for cascaded DC-DC converters in micro-grid applications.The presented FOPIDQOAOA model is designed to enhance the overall efficiency of the cascaded DC-DC boost converter.In addition,the proposed model develops a FOPID controller using a stacked sparse autoencoder(SSAE)model to regulate the converter output voltage.To tune the hyper-parameters related to the SSAE model,the QOAOA is derived by the including of the quasi-oppositional based learning(QOBL)with traditional AOA.Moreover,an objective function with the including of the integral of time multiplied by squared error(ITSE)is considered in this study.For validating the efficiency of the FOPID-QOAOA method,a sequence of simulations was performed under distinct aspects.A comparative study on cascaded buck and boost converters is carried out to authenticate the effectiveness and performance of the designed techniques.展开更多
The main aim of this work is to design a suitable Fractional Order Proportionl Integral Derivative(FOPID)controller with Chaotic Whale Optimization Algorithm(CWOA)for a RO desalination system.Continuous research on Re...The main aim of this work is to design a suitable Fractional Order Proportionl Integral Derivative(FOPID)controller with Chaotic Whale Optimization Algorithm(CWOA)for a RO desalination system.Continuous research on Reverse Osmosis(RO)desalination plants is a promising technique for satisfaction with sustainable and efficient RO plants.This work implements CWOA based FOPID for the simulation of reverse osmosis(RO)desalination process for both servo and regulatory problems.Mathematical modeling is a vital constituent of designing advanced and developed engineering processes,which helps to gain a deep study of processes to predict the performance,more efficiently.Numerous approaches have been employed for mathematical models based on mass and heat transfer and concentration of permeable flow rate.Incorporation of FOPID controllers is broadly used to improve the dynamic response of the system,at the same time,to reduce undershoot or overshoot,steady state error and hence improve the response.The performances of the FOPID controller with optimization is compared in terms of measures such as Integral Time Absolute Error(ITAE)and Integral Square Error(ISE).Simulation results with FOPID on desalination process achieved rise time of 0.0311 s,settling time of 0.0489 s and 0.7358%overshoot,better than the existing techniques available in the literatures.展开更多
文摘由于可再生能源发电系统固有的不确定性以及日益扩大的电网规模和区域内电站结构的复杂度对电力系统稳定运行造成影响。抽水蓄能电站作为一种调频资源,已成为区域电网负荷频率控制(load frequency control,LFC)的重要手段之一。由此,开展了抽水蓄能电站的区域LFC研究,搭建了考虑死区和发电速度约束等非线性因素下的两区域再热式汽轮机组LFC模型,设计了一个分数阶PID(fractional order PID,FOPID)控制器,利用改进Oustaloup算法实现分数阶微分算子的近似并与传统的PID控制器进行比较。仿真结果表明,文中提出的FOPID策略在控制含有非线性环节的系统时能达到更好的控制效果,表现出较强的鲁棒稳定性。对于抽水蓄能电站参与的负荷频率控制,能够缩短频率恢复时间,使二次调频的动态性能得到很大提升。
文摘应用于孤岛型微电网以实现频率控制功能的传统控制器多为分数阶PID(fractional order PID,FOPID)控制器及模糊分数阶PID(fuzzy fractional order PID,FFOPID)控制器,二者的控制性能均存在局限性。针对这一问题,设计了一种变论域混合FFOPID控制器,用于提高孤岛微电网的频率控制性能。通过对比FOPID、FFOPID以及变论域混合FFOPID3种控制器作用时的不同效果,证明了变论域混合FFOPID控制器相比其他控制器对于孤岛微电网的频率控制有着更好的控制性能。同时考虑了反馈信号受到测量噪声干扰时对控制器的控制性能产生影响进而使得孤岛微电网频率波动增大的情况,并针对此问题使用了动态数据校正(dynamic datareconciliation,DDR)滤波技术。通过对比时域仿真中FOPID、FFOPID以及变论域混合FFOPID控制器各自作用时孤岛微电网频率偏差的输出结果,验证了DDR滤波技术对孤岛微电网的频率控制的显著效果。
文摘In this paper, a fractional order proportional integral derivative (FOPID) controller for multiarea automatic generation control (AGC) scheme has been designed. FOPID controller has five parameters and provides two additional degrees of flexibility in comparison to a proportional integral derivative (PID) controller. The optimal values of parameters of FOPID controller have been determined using Big Bang Big Crunch (BBBC) search algorithm. The designed controller regulates real power output of generators to achieve the best dynamic response of frequency and tie-line power on a load perturbation. The complete scheme for designing of the controllers has been developed and demonstrated on multiarea deregulated power system. The performance of the designed FOPID controllers has been compared with the optimally tuned PID controllers. It is observed from the results that the FOPID controller shows a considerable improvement in the performance as compared to the conventional PID controller.
文摘Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-derivative(FOPID)controller that utilizes a modified elite opposition-based artificial hummingbird algorithm(m-AHA)for optimal parameter tuning.Our approach outperforms existing optimization techniques on benchmark functions,and we demonstrate its effectiveness in controlling cruise control systems with increased flexibility and precision.Our study contributes to the advancement of autonomous vehicle technology by introducing a novel and efficient method for FOPID controller design that can enhance the driving experience while ensuring safety and reliability.We highlight the significance of our findings by demonstrating how our approach can improve the performance,safety,and reliability of autonomous vehicles.This study’s contributions are particularly relevant in the context of the growing demand for autonomous vehicles and the need for advanced control techniques to ensure their safe operation.Our research provides a promising avenue for further research and development in this area.
基金Sponsored by the Foundation of Jilin Educational Committee(Grant No.22201-2221010195)
文摘In this paper,three tuning methods of the integer order proportional integral derivative(IOPID)controller,the fuzzy proportional integral derivative(FPID)controller and the fractional order proportional integral derivative(FOPID)controller for high order system are presented respectively.Both IOPID controller and FOPID controller designed by the two tuning methods can satisfy all the three specifications proposed,which can guarantee the desired control performance and the robustness of the high order system to the loop gain variations.From the simulation results,the three controllers meet the dynamic performance requirements of high order system.Moreover,the FOPID controller,with the shortest overshoot and adjustment time,outperforms the IOPID controller and the FPID controller for the high order system.
文摘In this paper,load frequency control is performed for a two-area power system incorporating a high penetration of renewable energy sources.A droop controller for a type 3 wind turbine is used to extract the stored kinetic energy from the rotating masses during sudden load disturbances.An auxiliary storage controller is applied to achieve effec-tive frequency response.The coot optimization algorithm(COA)is applied to allocate the optimum parameters of the fractional-order proportional integral derivative(FOPID),droop and auxiliary storage controllers.The fitness function is represented by the summation of integral square deviations in tie line power,and Areas 1 and 2 frequency errors.The robustness of the COA is proven by comparing the results with benchmarked optimizers including:atomic orbital search,honey badger algorithm,water cycle algorithm and particle swarm optimization.Performance assessment is confirmed in the following four scenarios:(i)optimization while including PID controllers;(ii)optimization while including FOPID controllers;(iii)validation of COA results under various load disturbances;and(iv)validation of the proposed controllers under varying weather conditions.
文摘This paper proposes an improved sine-cosine algorithm(ISCA)based 2-DOF-PID controller for load frequency control.A three-area test system is built for study,while some physical constraints(nonlinearities)are considered for the investigation of a realistic power system.The proposed method is used as the parameter optimizer of the LFC control-ler in different scenarios.The 2-DOF-PID controllers are used because of their capability of fast disturbance rejection without significant increase of overshoot in set-point tracking.The 2-DOF-PID controllers’efficacy is observed by examining the responses with the outcomes obtained with PID and FOPID controllers.The simulation results with the suggested scheme are correlated with some of the existing algorithms,such as SCA,SSA,ALO,and PSO in three dif-ferent scenarios,i.e.,a disturbance in two areas,in three areas,and in the presence of physical constraints.In addition,the study is extended to a four-area power system.Statistical analysis is performed using the Wilcoxon Sign Rank Test(WSRT)on 20 independent runs.This confirms the supremacy of the proposed method.
基金supported by the Estonian Research Council(PRG658)。
文摘The robust stability study of the classic Smith predictor-based control system for uncertain fractional-order plants with interval time delays and interval coefficients is the emphasis of this work.Interval uncertainties are a type of parametric uncertainties that cannot be avoided when modeling real-world plants.Also,in the considered Smith predictor control structure it is supposed that the controller is a fractional-order proportional integral derivative(FOPID)controller.To the best of the authors'knowledge,no method has been developed until now to analyze the robust stability of a Smith predictor based fractional-order control system in the presence of the simultaneous uncertainties in gain,time-constants,and time delay.The three primary contributions of this study are as follows:ⅰ)a set of necessary and sufficient conditions is constructed using a graphical method to examine the robust stability of a Smith predictor-based fractionalorder control system—the proposed method explicitly determines whether or not the FOPID controller can robustly stabilize the Smith predictor-based fractional-order control system;ⅱ)an auxiliary function as a robust stability testing function is presented to reduce the computational complexity of the robust stability analysis;andⅲ)two auxiliary functions are proposed to achieve the control requirements on the disturbance rejection and the noise reduction.Finally,four numerical examples and an experimental verification are presented in this study to demonstrate the efficacy and significance of the suggested technique.
基金This Research was Financially Supported by Faculty of Engineering,Mahasarakham University(Grant year 2021).
文摘This paper proposes a low complexity control scheme for voltage control of a dynamic voltage restorer(DVR)in a three-phase system.The control scheme employs the fractional order,proportional-integral-derivative(FOPID)controller to improve on the DVR performance in order to enhance the power quality in terms of the response time,steady-state error and total harmonic distortion(THD).The result obtained was compared with fractional order,proportionalintegral(FOPI),proportional-integral-derivative(PID)and proportional-integral(PI)controllers in order to show the effectiveness of the proposed DVR control scheme.A water cycle optimization algorithm(WCA)was utilized to find the optimal set for all the controller gains.They were used to solve four power quality issues;balanced voltage sag,balanced voltage swell,unbalanced voltage sag,and unbalanced voltage swell.It showed that one set of controller gain obtained from the WCA could solve all the power quality issues while the others in the literature needed an individual set of optimal gain for each power quality problem.To prove the concept,the proposed DVR algorithm was simulated in the MATLAB/Simulink software and the results revealed that the four optimal controllers can compensate for all the power quality problems.A comparative analysis of the results in various aspects of their dynamic response and%THD was discussed and analyzed.It was found that PID controller yields the most rapid performance in terms of average response time while FOPID controller yields the best performance in term of average%steady-state error.FOPI controller was found to provide the lowest THD percentage in the average%THD.FOPID did not differ much in average response from the PID and average%THD from FOPI;however,FOPID provided the most outstanding average steady-state error.According to the CBMA curve,the dynamic responses of all controllers fall in the acceptable power quality area.The total harmonic distortion(THD)of the compensated load voltage from all the controllers were within the 8%
基金the National Natural Science Foundation of China(No.51109090)the Natural Fund of Fujian Province(No.2015J01214)+2 种基金the Key Project of Fujian Provincial Department of Science & Technology(No.2012H0030)the University’s Innovative Project of Xiamen Science & Technology Bureau(No.3502Z20123019)the Project of New Century Excellent Talents of Colleges and Universities of Fujian Province(No.JA12181)
文摘In this paper, a new algorithm which integrates the powerful firefly Mgorithm (FA) and the ant colony optimization (ACO) has been used in tracking control of ship steering for optimization of fractional-order proportional-integral-derivative (FOPID) controller gains. Particle swarm optimization (PSO) algorithm is also used to optimize FOPID controllers, and their performances are compared. It is found that FA optimized FOPID controller gives better performance than others. Sensitivity analysis has been carried out to see the robustness of optimum FOPID gains obtained at nominal conditions to wide changes in system parameters, and the optimum FOPID gains need not be reset for wide changes in system parameters.
文摘Smart grids and their technologies transform the traditional electric grids to assure safe,secure,cost-effective,and reliable power transmission.Non-linear phenomena in power systems,such as voltage collapse and oscillatory phenomena,can be investigated by chaos theory.Recently,renewable energy resources,such as wind turbines,and solar photovoltaic(PV)arrays,have been widely used for electric power generation.The design of the controller for the direct Current(DC)converter in a PV system is performed based on the linearized model at an appropriate operating point.However,these operating points are everchanging in a PV system,and the design of the controller is usually accomplished based on a low irradiance level.This study designs a fractional-order proportional-integrated-derivative(FOPID)controller using deep learning(DL)with quasi-oppositional Archimedes Optimization algorithm(FOPID-QOAOA)for cascaded DC-DC converters in micro-grid applications.The presented FOPIDQOAOA model is designed to enhance the overall efficiency of the cascaded DC-DC boost converter.In addition,the proposed model develops a FOPID controller using a stacked sparse autoencoder(SSAE)model to regulate the converter output voltage.To tune the hyper-parameters related to the SSAE model,the QOAOA is derived by the including of the quasi-oppositional based learning(QOBL)with traditional AOA.Moreover,an objective function with the including of the integral of time multiplied by squared error(ITSE)is considered in this study.For validating the efficiency of the FOPID-QOAOA method,a sequence of simulations was performed under distinct aspects.A comparative study on cascaded buck and boost converters is carried out to authenticate the effectiveness and performance of the designed techniques.
文摘The main aim of this work is to design a suitable Fractional Order Proportionl Integral Derivative(FOPID)controller with Chaotic Whale Optimization Algorithm(CWOA)for a RO desalination system.Continuous research on Reverse Osmosis(RO)desalination plants is a promising technique for satisfaction with sustainable and efficient RO plants.This work implements CWOA based FOPID for the simulation of reverse osmosis(RO)desalination process for both servo and regulatory problems.Mathematical modeling is a vital constituent of designing advanced and developed engineering processes,which helps to gain a deep study of processes to predict the performance,more efficiently.Numerous approaches have been employed for mathematical models based on mass and heat transfer and concentration of permeable flow rate.Incorporation of FOPID controllers is broadly used to improve the dynamic response of the system,at the same time,to reduce undershoot or overshoot,steady state error and hence improve the response.The performances of the FOPID controller with optimization is compared in terms of measures such as Integral Time Absolute Error(ITAE)and Integral Square Error(ISE).Simulation results with FOPID on desalination process achieved rise time of 0.0311 s,settling time of 0.0489 s and 0.7358%overshoot,better than the existing techniques available in the literatures.