The mineralogy and petrography of natural graphite in Saba Boru of Ethiopia indicate that there exists flake graphite with a slightly oval structured fine size according to our study on thin and polished sections.Here...The mineralogy and petrography of natural graphite in Saba Boru of Ethiopia indicate that there exists flake graphite with a slightly oval structured fine size according to our study on thin and polished sections.Herein,for estimating the carbon content in graphite,the ASTM-C561,the test method for ash in a graphite sample,was used.For characterizing graphite,x-ray diffraction,x-ray fluorescence,inductively coupled plasma mass spectroscopy,and scanning electron microscopy were also used.Chemical analysis of ore samples determined that the average compositions are 63.35%SiO2,15.45%Al2O3,2.36%Fe2O3,2.07%K2O,less than1%others,and loss-on-ignition(LOI)in the range of^4.74%–37.42%.The total carbon content of graphitic ore ranged from 4.11%to 33.14%.Importantly,when graphite is concentrated through floatation,its average purity and recovery are 92.97%and 90.82%,respectively.Furthermore,once the graphite concentrates are treated with hydrofluoric acid,the average value attains a high grade of 96.48%C.Moreover,the average ash content is 81.93%(pre-flotation)and 3.1%(post-flotation),respectively.Finally,after beneficiation,a silica is identified as a major gangue(85.88%),usable as a raw material for other purposes such as cement.Hence,these graphite-bearing rocks seem to be worth exploring for commercialization opportunities.展开更多
By controlling Dy vapor deposition process, the amount of Dy that diffused into the magnet was increased gradually from 0.1 wt.% to 0.3 wt.%. Compared with the original status, the coercivity increment was not proport...By controlling Dy vapor deposition process, the amount of Dy that diffused into the magnet was increased gradually from 0.1 wt.% to 0.3 wt.%. Compared with the original status, the coercivity increment was not proportional to the Dy diffusion amount. Subsequent H(cj) and Dy content gradient data showed that slope of the 0.3 wt.% sample gradient was bigger than that of 0.1 wt.% one, and the gaps between outer flakes and inner flakes enlarged with the increasement of Dy diffusion amount. Although Dy mostly enriched in triple-junction regions in electron-probe microscope analysis(EPMA) images, the following Auger depth graph showed that Dy content was as high as 3.0 at.% in 1.5 mm deep center. It proved that Dy tended to get into the main phase rather than stayed in the grain boundary during the diffusion process, and over-diffusion of Dy in the main phase was unhelpful for the coercivity enhancement.展开更多
The FTP200 flake tantalum powder was introduced.The microstructures of the powder with leaf-like primary particles having an average flakiness of 2 to 20 and porous agglomerated particles were observed.The chemical co...The FTP200 flake tantalum powder was introduced.The microstructures of the powder with leaf-like primary particles having an average flakiness of 2 to 20 and porous agglomerated particles were observed.The chemical composition,physical properties,and electrical properties of the FTP200 powder were compared with those of the FTW300 nodular powder.The FTP200 powder is more sinter-resistant,and the surface area of the flake tantalum powder under sintering at high temperature has less loss than that of the nodular tantalum powder.The specific capacitance of the flake tantalum powder is higher than that of the nodular tantalum powder with the same surface area when anodized at high voltage.Thus,the flake tantalum powder is suitable for manufacturing tantalum solid electrolytic capacitors in the range of median and high(20-63 V) voltages.展开更多
To explore the mechanism of carbonyl iron flake composites for microwave complex permeability, this paper investigates the feature of the flakes. The shape anisotropy was certified by the results of the magnetization ...To explore the mechanism of carbonyl iron flake composites for microwave complex permeability, this paper investigates the feature of the flakes. The shape anisotropy was certified by the results of the magnetization hysteresis loops and the Mossbauer spectra. Furthermore, the shape anisotropy was used to explain the origin of composite microwave performance, and the calculated results agree with the experiment. It is believed that the shape anisotropy dominates microwave complex permeability, and the natural resonance plays main role in flake.展开更多
The properties of gray cast iron(GCI)are affected by density of matrix,size of flake graphite and primary austenite.In this paper,the Y-type specimen of GCI was prepared by lost foam casting(LFC)with and without vibra...The properties of gray cast iron(GCI)are affected by density of matrix,size of flake graphite and primary austenite.In this paper,the Y-type specimen of GCI was prepared by lost foam casting(LFC)with and without vibration,and the influence of vibration frequency on the density of matrix,size of primary phase,and properties of the GCI was studied.The results show that the length of the flake graphite and the size of the primary austenite in GCI firstly decrease and then increase with the increase of the vibration frequency.With a vibration frequency of 35 Hz,the length of the flake graphite is the shortest,the primary austenite is the finest and the density of the matrix is the highest.In addition,the tensile strength,elongation and hardness of the GCI firstly increase and then decrease with the increase of the vibration frequency,due to the refinement of the primary phase and the increase of the matrix density.In order to analyze the refinement mechanism of the primary phase of the GCI fabricated by the LFC with vibration,the solidification temperature fields of the GCI fabricated by the LFC with the vibration frequency of 0 and 35 Hz were measured.The results show that the vibration reduces the eutectic point of the GCI and increases the supercooling degree during the eutectic transformation.As a result,the length of the flake graphite and the size of the primary austenite in GCI fabricated by LFC with the vibration frequency of 35 Hz decrease.展开更多
The preparation of fine copper powders by chemical reduction method was investigated. The reaction of [Cu(NH3)4]2^+ complex with hydrazine hydrate gives spherical monodispersed fine copper powders. The spherical co...The preparation of fine copper powders by chemical reduction method was investigated. The reaction of [Cu(NH3)4]2^+ complex with hydrazine hydrate gives spherical monodispersed fine copper powders. The spherical copper powder with a uniform size of 3.5 ± 0.5 μtm was processed to obtain flake copper powder having a uniform size of 8-10 μm, excellent dispersibility and uniform shape. The spherical copper powder of 2.5 ±0.3 μm in size, flake copper, glass frit and vehicle were mixed to prepare copper paste, which was fired in 910-920℃ to obtain BME-MLCC (base metal multilayer ceramic capacitor) with a dense surface of end termination, high adhesion and qualified electrical behavior. Polarized light photo and SEM were employed to observe the copper end termination of BME-MLCC. The rough interface from the interracial reaction between glass and chip gives high adhesion.展开更多
The use of laser-induced breakdown spectroscopy(LIBS) for the analysis of heavy metals in water samples is investigated. Some factors such as splashing, surface ripples, extinction of emitted intensity, and a shorter ...The use of laser-induced breakdown spectroscopy(LIBS) for the analysis of heavy metals in water samples is investigated. Some factors such as splashing, surface ripples, extinction of emitted intensity, and a shorter plasma lifetime will influence the results if the water sample is directly measured. In order to avoid these disadvantages and the ‘coffee-ring effect', hydrophilic graphite flakes with annular grooves were used for the first time to enrich and concentrate heavy metals in water samples before being analyzed by LIBS. The proposed method and procedure have been evaluated to concentrate and analyze cadmium, chromium, copper, nickel, lead,and zinc in a water sample. The correlation coefficients were all above 0.99. The detection limits of 0.029, 0.087, 0.012, 0.083, 0.125, and 0.049 mgl^(-1) for Cd, Cr, Cu, Ni, Pb, and Zn,respectively, were obtained in samples prepared in a laboratory. With this structure, the heavy metals homogeneously distribute in the annular groove and the relative standard deviations are all below 6%. This method is very convenient and suitable for online in situ analysis of heavy metals.展开更多
一维湖泊模式是青藏高原湖泊研究的主要手段之一,但不同湖泊模式在青藏高原适用性及其差异依然不够明确。利用MODIS地表温度数据、青藏高原鄂陵湖站点观测的气象数据、湖温及湖面能量数据,驱动、评估和对比了目前应用最为广泛的两个一...一维湖泊模式是青藏高原湖泊研究的主要手段之一,但不同湖泊模式在青藏高原适用性及其差异依然不够明确。利用MODIS地表温度数据、青藏高原鄂陵湖站点观测的气象数据、湖温及湖面能量数据,驱动、评估和对比了目前应用最为广泛的两个一维湖泊模式Freshwater Lake Model(FLake)和Community Land Model version 4.5(CLM4.5)中耦合的湖泊模块在青藏高原典型湖泊的适用性。结果表明:FLake和CLM模式均能较好的对湖泊热力状况进行模拟,CLM模式对于湖表面温度和湖泊内部不同深度的温度模拟优于Flake模式,净辐射和能量的累积也是CLM模式的模拟值更接近观测值。造成Flake模式模拟偏差更大的原因与模式中计算感热、潜热的摩擦速度有关,观测的摩擦速度均值为0.22 m·s-1,CLM模式中的摩擦速度与观测值接近,为Flake模式的1.5倍,将CLM模式中的摩擦速度替换到Flake模式中后模拟结果有明显的改善。展开更多
Achieving thermal management composite material with isotropic thermal dissipation property by using an environmentally friendly and efficient method is one of the most challenging techniques as a traditional approach...Achieving thermal management composite material with isotropic thermal dissipation property by using an environmentally friendly and efficient method is one of the most challenging techniques as a traditional approach tending to form a horizontally arranged network within the polymer matrix or the preparation steps which are unduly cumbersome.What presented here is a closestack thermally conductive three-dimensional(3D)hybrid network structure prepared by a simple and green strategy that intercalating the modified aluminum oxide(m-Al_(2)O_(3))spheres of different sizes into the modified two-dimensional(2D)boron nitride(m-h-BN)flakes.An effective 3D network is created by the multi-dimensional fillers through volume exclusion and synergistic effects.The m-h-BN flakes facilitate in-plane heat transfer,while the variously sized m-Al_(2)O_(3)spheres insert into the gaps between adjacent m-h-BN flakes,which is conducive to the heat transfer in the out-of-plane direction.Additionally,strong interactions between the m-Al_(2)O_(3)and m-h-BN promote the effective heat flux inside the 3D hybrid network structure.The 3D hybrid composite displays favorable quasi-isotropic heat dissipation property(through-plane thermal conductivity of 2.2 W·m^(-1)·K^(-1)and in-plane thermal conductivity of 11.6 W·m^(-1)·K^(-1))in comparison with the single-filler composites.Furthermore,the hybrid-filler composite has excellent mechanical properties and thermal stability.The efficient heat dissipation capacity of the hybrid composite is further confirmed by a finite element simulation,which indicates that the sphere-flake hybrid structure possesses a higher thermal conductivity and faster thermal response performance than the single-filler system.The composite material has great potential in meeting the needs of emerging and advancing power systems.展开更多
基金This work was supported by Jimma Institute of Technology through Mega Project.
文摘The mineralogy and petrography of natural graphite in Saba Boru of Ethiopia indicate that there exists flake graphite with a slightly oval structured fine size according to our study on thin and polished sections.Herein,for estimating the carbon content in graphite,the ASTM-C561,the test method for ash in a graphite sample,was used.For characterizing graphite,x-ray diffraction,x-ray fluorescence,inductively coupled plasma mass spectroscopy,and scanning electron microscopy were also used.Chemical analysis of ore samples determined that the average compositions are 63.35%SiO2,15.45%Al2O3,2.36%Fe2O3,2.07%K2O,less than1%others,and loss-on-ignition(LOI)in the range of^4.74%–37.42%.The total carbon content of graphitic ore ranged from 4.11%to 33.14%.Importantly,when graphite is concentrated through floatation,its average purity and recovery are 92.97%and 90.82%,respectively.Furthermore,once the graphite concentrates are treated with hydrofluoric acid,the average value attains a high grade of 96.48%C.Moreover,the average ash content is 81.93%(pre-flotation)and 3.1%(post-flotation),respectively.Finally,after beneficiation,a silica is identified as a major gangue(85.88%),usable as a raw material for other purposes such as cement.Hence,these graphite-bearing rocks seem to be worth exploring for commercialization opportunities.
文摘By controlling Dy vapor deposition process, the amount of Dy that diffused into the magnet was increased gradually from 0.1 wt.% to 0.3 wt.%. Compared with the original status, the coercivity increment was not proportional to the Dy diffusion amount. Subsequent H(cj) and Dy content gradient data showed that slope of the 0.3 wt.% sample gradient was bigger than that of 0.1 wt.% one, and the gaps between outer flakes and inner flakes enlarged with the increasement of Dy diffusion amount. Although Dy mostly enriched in triple-junction regions in electron-probe microscope analysis(EPMA) images, the following Auger depth graph showed that Dy content was as high as 3.0 at.% in 1.5 mm deep center. It proved that Dy tended to get into the main phase rather than stayed in the grain boundary during the diffusion process, and over-diffusion of Dy in the main phase was unhelpful for the coercivity enhancement.
文摘The FTP200 flake tantalum powder was introduced.The microstructures of the powder with leaf-like primary particles having an average flakiness of 2 to 20 and porous agglomerated particles were observed.The chemical composition,physical properties,and electrical properties of the FTP200 powder were compared with those of the FTW300 nodular powder.The FTP200 powder is more sinter-resistant,and the surface area of the flake tantalum powder under sintering at high temperature has less loss than that of the nodular tantalum powder.The specific capacitance of the flake tantalum powder is higher than that of the nodular tantalum powder with the same surface area when anodized at high voltage.Thus,the flake tantalum powder is suitable for manufacturing tantalum solid electrolytic capacitors in the range of median and high(20-63 V) voltages.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90505007 and 10774061)
文摘To explore the mechanism of carbonyl iron flake composites for microwave complex permeability, this paper investigates the feature of the flakes. The shape anisotropy was certified by the results of the magnetization hysteresis loops and the Mossbauer spectra. Furthermore, the shape anisotropy was used to explain the origin of composite microwave performance, and the calculated results agree with the experiment. It is believed that the shape anisotropy dominates microwave complex permeability, and the natural resonance plays main role in flake.
基金financially supported by the National High Technology Research and Development Program of China(No.2007AA03Z113)
文摘The properties of gray cast iron(GCI)are affected by density of matrix,size of flake graphite and primary austenite.In this paper,the Y-type specimen of GCI was prepared by lost foam casting(LFC)with and without vibration,and the influence of vibration frequency on the density of matrix,size of primary phase,and properties of the GCI was studied.The results show that the length of the flake graphite and the size of the primary austenite in GCI firstly decrease and then increase with the increase of the vibration frequency.With a vibration frequency of 35 Hz,the length of the flake graphite is the shortest,the primary austenite is the finest and the density of the matrix is the highest.In addition,the tensile strength,elongation and hardness of the GCI firstly increase and then decrease with the increase of the vibration frequency,due to the refinement of the primary phase and the increase of the matrix density.In order to analyze the refinement mechanism of the primary phase of the GCI fabricated by the LFC with vibration,the solidification temperature fields of the GCI fabricated by the LFC with the vibration frequency of 0 and 35 Hz were measured.The results show that the vibration reduces the eutectic point of the GCI and increases the supercooling degree during the eutectic transformation.As a result,the length of the flake graphite and the size of the primary austenite in GCI fabricated by LFC with the vibration frequency of 35 Hz decrease.
文摘The preparation of fine copper powders by chemical reduction method was investigated. The reaction of [Cu(NH3)4]2^+ complex with hydrazine hydrate gives spherical monodispersed fine copper powders. The spherical copper powder with a uniform size of 3.5 ± 0.5 μtm was processed to obtain flake copper powder having a uniform size of 8-10 μm, excellent dispersibility and uniform shape. The spherical copper powder of 2.5 ±0.3 μm in size, flake copper, glass frit and vehicle were mixed to prepare copper paste, which was fired in 910-920℃ to obtain BME-MLCC (base metal multilayer ceramic capacitor) with a dense surface of end termination, high adhesion and qualified electrical behavior. Polarized light photo and SEM were employed to observe the copper end termination of BME-MLCC. The rough interface from the interracial reaction between glass and chip gives high adhesion.
基金supported by National Natural Science Foundation of China (No. 21735005)the Science and Technology Program of Anhui Province (No. 1501041119)+1 种基金the Science and Technology Major Special Program of Anhui Province (No. 15CZZ04125)National Key Research and Development Plan of China (No. 2016YFD0800902-2)
文摘The use of laser-induced breakdown spectroscopy(LIBS) for the analysis of heavy metals in water samples is investigated. Some factors such as splashing, surface ripples, extinction of emitted intensity, and a shorter plasma lifetime will influence the results if the water sample is directly measured. In order to avoid these disadvantages and the ‘coffee-ring effect', hydrophilic graphite flakes with annular grooves were used for the first time to enrich and concentrate heavy metals in water samples before being analyzed by LIBS. The proposed method and procedure have been evaluated to concentrate and analyze cadmium, chromium, copper, nickel, lead,and zinc in a water sample. The correlation coefficients were all above 0.99. The detection limits of 0.029, 0.087, 0.012, 0.083, 0.125, and 0.049 mgl^(-1) for Cd, Cr, Cu, Ni, Pb, and Zn,respectively, were obtained in samples prepared in a laboratory. With this structure, the heavy metals homogeneously distribute in the annular groove and the relative standard deviations are all below 6%. This method is very convenient and suitable for online in situ analysis of heavy metals.
文摘一维湖泊模式是青藏高原湖泊研究的主要手段之一,但不同湖泊模式在青藏高原适用性及其差异依然不够明确。利用MODIS地表温度数据、青藏高原鄂陵湖站点观测的气象数据、湖温及湖面能量数据,驱动、评估和对比了目前应用最为广泛的两个一维湖泊模式Freshwater Lake Model(FLake)和Community Land Model version 4.5(CLM4.5)中耦合的湖泊模块在青藏高原典型湖泊的适用性。结果表明:FLake和CLM模式均能较好的对湖泊热力状况进行模拟,CLM模式对于湖表面温度和湖泊内部不同深度的温度模拟优于Flake模式,净辐射和能量的累积也是CLM模式的模拟值更接近观测值。造成Flake模式模拟偏差更大的原因与模式中计算感热、潜热的摩擦速度有关,观测的摩擦速度均值为0.22 m·s-1,CLM模式中的摩擦速度与观测值接近,为Flake模式的1.5倍,将CLM模式中的摩擦速度替换到Flake模式中后模拟结果有明显的改善。
基金financially supported by the National Natural Science Foundation of China(No.51972162)。
文摘Achieving thermal management composite material with isotropic thermal dissipation property by using an environmentally friendly and efficient method is one of the most challenging techniques as a traditional approach tending to form a horizontally arranged network within the polymer matrix or the preparation steps which are unduly cumbersome.What presented here is a closestack thermally conductive three-dimensional(3D)hybrid network structure prepared by a simple and green strategy that intercalating the modified aluminum oxide(m-Al_(2)O_(3))spheres of different sizes into the modified two-dimensional(2D)boron nitride(m-h-BN)flakes.An effective 3D network is created by the multi-dimensional fillers through volume exclusion and synergistic effects.The m-h-BN flakes facilitate in-plane heat transfer,while the variously sized m-Al_(2)O_(3)spheres insert into the gaps between adjacent m-h-BN flakes,which is conducive to the heat transfer in the out-of-plane direction.Additionally,strong interactions between the m-Al_(2)O_(3)and m-h-BN promote the effective heat flux inside the 3D hybrid network structure.The 3D hybrid composite displays favorable quasi-isotropic heat dissipation property(through-plane thermal conductivity of 2.2 W·m^(-1)·K^(-1)and in-plane thermal conductivity of 11.6 W·m^(-1)·K^(-1))in comparison with the single-filler composites.Furthermore,the hybrid-filler composite has excellent mechanical properties and thermal stability.The efficient heat dissipation capacity of the hybrid composite is further confirmed by a finite element simulation,which indicates that the sphere-flake hybrid structure possesses a higher thermal conductivity and faster thermal response performance than the single-filler system.The composite material has great potential in meeting the needs of emerging and advancing power systems.