In this paper nonlinear analysis of a thin rectangular functionally graded piate is formulated in terms of von-Karman's dynamic equations. Functionaily Graded Material (FGM) properties vary through the constant thi...In this paper nonlinear analysis of a thin rectangular functionally graded piate is formulated in terms of von-Karman's dynamic equations. Functionaily Graded Material (FGM) properties vary through the constant thickness of the plate at ambient temperature. By expansion of the solution as a series of mode functions, we reduce the governing equations of motion to a Duffing's equation. The homotopy perturbation solution of generated Duffing's equation is also obtained and compared with numerical solutions. The sufficient conditions for the existence of periodic oscillatory behavior of the plate are established by using Green's function and Schauder's fixed point theorem.展开更多
文摘In this paper nonlinear analysis of a thin rectangular functionally graded piate is formulated in terms of von-Karman's dynamic equations. Functionaily Graded Material (FGM) properties vary through the constant thickness of the plate at ambient temperature. By expansion of the solution as a series of mode functions, we reduce the governing equations of motion to a Duffing's equation. The homotopy perturbation solution of generated Duffing's equation is also obtained and compared with numerical solutions. The sufficient conditions for the existence of periodic oscillatory behavior of the plate are established by using Green's function and Schauder's fixed point theorem.