期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
扭平凡扩张与表示维数 被引量:1
1
作者 郑立景 《数学进展》 CSCD 北大核心 2014年第4期512-520,共9页
设k是代数闭域,∧是k上基本有限维连通Koszul自入射代数.本文首先证明:如果∧满足有限生成(FG)假设,那么存在∧的k-代数自同构σ0使得关于∧-双模D∧^(σ0)的扭平凡扩张T(∧^(σ0))=∧×D∧^(σ0)亦满足FG假设.由此得到,在∧满足FG... 设k是代数闭域,∧是k上基本有限维连通Koszul自入射代数.本文首先证明:如果∧满足有限生成(FG)假设,那么存在∧的k-代数自同构σ0使得关于∧-双模D∧^(σ0)的扭平凡扩张T(∧^(σ0))=∧×D∧^(σ0)亦满足FG假设.由此得到,在∧满足FG假设的条件下,(1)T(A^(σ0))的表示维数大于等于∧的复杂度加2;(2)设G是∧的k-代数自同构群Aut_k(∧)的有限子群,且其阶在∧中可逆.如果对于任意的g∈G都有σ0g=gσ0,那么斜群代数∧*G的扭平凡扩张代数T((∧*G)^(σ0))的表示维数大于等于∧的复杂度加2. 展开更多
关键词 表示维数 有限生成假设 扭平凡扩张 Koszul自入射代数
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部