针对传统控制方法难以解决自由漂浮空间机器人(free-floating space robot, FFSR)轨迹跟踪过程中的各类约束的问题,采用模型预测控制对自由漂浮空间机器人的轨迹跟踪问题进行了研究.在自由漂浮空间机器人拉格朗日动力学模型的基础上,建...针对传统控制方法难以解决自由漂浮空间机器人(free-floating space robot, FFSR)轨迹跟踪过程中的各类约束的问题,采用模型预测控制对自由漂浮空间机器人的轨迹跟踪问题进行了研究.在自由漂浮空间机器人拉格朗日动力学模型的基础上,建立了系统伪线性化的扩展状态空间模型;在给定系统的性能指标和各类约束的情况下,基于拉盖尔模型设计相应的离散模型预测控制器,并证明控制器的稳定性,控制器中引入任务空间滑模变量实现了对末端期望位置和期望速度的同时跟踪;以平面二杆自由漂浮空间机器人为例,对无约束末端轨迹跟踪和有约束末端轨迹跟踪两种情况进行对比仿真验证.仿真结果表明,该模型预测控制器不仅可以实现对末端期望轨迹的有效跟踪,还能满足各类约束.展开更多
An effective and more efficient path planning algorithm is developed for a kinematically non-redundant free-floating space robot(FFSR) system by proposing a concept of degree of controllability(DOC) for underactuated ...An effective and more efficient path planning algorithm is developed for a kinematically non-redundant free-floating space robot(FFSR) system by proposing a concept of degree of controllability(DOC) for underactuated systems. The DOC concept is proposed for making full use of the internal couplings and then achieving a better control effect, followed by a certain definition of controllability measurement which measures the DOC, based on obtaining an explicit and finite equivalent affine system and singular value decomposition. A simple method for nilpotent approximation of the Lie algebra generated by the FFSR system is put forward by direct Taylor expansion when obtaining the equivalent system. Afterwards, a large-controlla- bility-measurement(LCM) nominal path is searched by a weighted A* algorithm, and an optimal self-correcting method is designed to track the nominal path approximately, yielding an efficient underactuated path. The proposed strategy successfully avoids the drawback of inefficiency inherent in previous path-planning schemes, which is due to the neglect of internal couplings, and illustrative numerical examples show its efficacy.展开更多
文摘针对传统控制方法难以解决自由漂浮空间机器人(free-floating space robot, FFSR)轨迹跟踪过程中的各类约束的问题,采用模型预测控制对自由漂浮空间机器人的轨迹跟踪问题进行了研究.在自由漂浮空间机器人拉格朗日动力学模型的基础上,建立了系统伪线性化的扩展状态空间模型;在给定系统的性能指标和各类约束的情况下,基于拉盖尔模型设计相应的离散模型预测控制器,并证明控制器的稳定性,控制器中引入任务空间滑模变量实现了对末端期望位置和期望速度的同时跟踪;以平面二杆自由漂浮空间机器人为例,对无约束末端轨迹跟踪和有约束末端轨迹跟踪两种情况进行对比仿真验证.仿真结果表明,该模型预测控制器不仅可以实现对末端期望轨迹的有效跟踪,还能满足各类约束.
基金supported by the National Natural Science Foundation of China(Grant No.11272027)
文摘An effective and more efficient path planning algorithm is developed for a kinematically non-redundant free-floating space robot(FFSR) system by proposing a concept of degree of controllability(DOC) for underactuated systems. The DOC concept is proposed for making full use of the internal couplings and then achieving a better control effect, followed by a certain definition of controllability measurement which measures the DOC, based on obtaining an explicit and finite equivalent affine system and singular value decomposition. A simple method for nilpotent approximation of the Lie algebra generated by the FFSR system is put forward by direct Taylor expansion when obtaining the equivalent system. Afterwards, a large-controlla- bility-measurement(LCM) nominal path is searched by a weighted A* algorithm, and an optimal self-correcting method is designed to track the nominal path approximately, yielding an efficient underactuated path. The proposed strategy successfully avoids the drawback of inefficiency inherent in previous path-planning schemes, which is due to the neglect of internal couplings, and illustrative numerical examples show its efficacy.