同步定位与地图构建(Simultaneous Location and Mapping,SLAM)是机器人在未知环境中实现自我导航能力的重要保证。目前SLAM算法使用的主传感器基本是激光雷达或视觉相机。二者各具优劣,激光雷达能更精确地进行测距,视觉相机能反映环境...同步定位与地图构建(Simultaneous Location and Mapping,SLAM)是机器人在未知环境中实现自我导航能力的重要保证。目前SLAM算法使用的主传感器基本是激光雷达或视觉相机。二者各具优劣,激光雷达能更精确地进行测距,视觉相机能反映环境丰富的纹理信息。与使用单一传感器相比,将二者融合的SLAM算法能够获得更多环境信息,达到更好的定位和建图效果。文章提出一种融合激光雷达和视觉相机的帧间匹配方法,通过在SLAM帧间匹配过程中加入地面约束以及视觉特征约束,提高帧间匹配过程精度,增强算法鲁棒性,从而提升SLAM算法整体效果。文章最后利用采集的地下停车库数据进行结果验证,与开源算法A-LOAM进行对比。结果表明,相比A-LOAM的帧间匹配方法,文章提出的方法相对位姿误差提升约30%。展开更多
针对传统车辆检索方法中存在准确性和区分度较低的问题,提出了一个基于改进SURF(speeded up robust features)算法的视频车辆检索方法。在车辆视频关键帧提取的基础上,根据改进SURF算法完成车辆图像的特征提取及匹配,其中包含改进FAST(f...针对传统车辆检索方法中存在准确性和区分度较低的问题,提出了一个基于改进SURF(speeded up robust features)算法的视频车辆检索方法。在车辆视频关键帧提取的基础上,根据改进SURF算法完成车辆图像的特征提取及匹配,其中包含改进FAST(features from accelerated segment test)特征点检测、SURF特征向量提取以及最近邻查询方法来进行特征点的匹配;通过计算比较待检索车辆图像与数据库车辆图像的相似度,算法完成图像筛选并反馈检索结果。实验结果表明:针对交通监控视频中待检索车辆,该方法能够较为准确地进行检索并反馈结果。展开更多
针对ORB(oriented FAST and rotated BRIEF)特征匹配算法在实时性要求较高领域效果不佳以及在复杂光照环境下匹配精确率较低的问题,提出了一种基于改进FAST(features from accelerated segment test)检测的ORB算法。首先,对待处理的灰...针对ORB(oriented FAST and rotated BRIEF)特征匹配算法在实时性要求较高领域效果不佳以及在复杂光照环境下匹配精确率较低的问题,提出了一种基于改进FAST(features from accelerated segment test)检测的ORB算法。首先,对待处理的灰度图像进行分类,剔除掉部分灰度变化率较低的区域,然后提取FAST特征点并计算描述子,最后采用汉明距离完成匹配。此外,在提取FAST特征点时,设计了一种自适应半径,利用图像对比度自适应调整检测半径,当图像对比度突变时依然能够保证期望的特征点数量。实验结果表明,改进后的ORB算法匹配时间缩短了16.47%,大幅提高了在复杂光照环境下的匹配精确率,具有较强的鲁棒性和实时性。展开更多
为进一步提升网络入侵检测效果,提出一种融合FAST特征选择与自适应二进制量子引力搜索支持向量机的(FAST-ABQGSA-SVM)网络入侵检测算法。利用FAST算法过滤掉原始特征集中冗余无关的特征形成候选特征子集,基于组合优化策略采用自适应二...为进一步提升网络入侵检测效果,提出一种融合FAST特征选择与自适应二进制量子引力搜索支持向量机的(FAST-ABQGSA-SVM)网络入侵检测算法。利用FAST算法过滤掉原始特征集中冗余无关的特征形成候选特征子集,基于组合优化策略采用自适应二进制量子引力搜索算法对候选特征子集与SVM分类器参数进行组合优化。在ABQGSA反复学习寻优过程中,采取动态自适应波动式调整策略更新量子旋转角以平衡算法全局搜索能力和局部搜索能力;同时为提升算法的自适应变异能力,设计与进化程度及个体适应度值相关的自适应变异概率,当种群进化出现停滞时及时引入量子位离散交叉操作帮助种群摆脱局部极值。通过KDD CUP 99仿真实验表明,所提出的FAST-ABQGSA-SVM算法较其他同类型检测算法具有更好的鲁棒性、学习精度以及检测效果。展开更多
针对基于图优化的激光SLAM算法在高相似度的场景中闭环检测出错的问题,提出使用双目相机进行闭环检测的方法.使用加入旋转不变性的FAST特征点和BRIEF描述子进行双目深度估计;引入局部地图的概念,使用单帧激光雷达数据与局部地图进行匹配...针对基于图优化的激光SLAM算法在高相似度的场景中闭环检测出错的问题,提出使用双目相机进行闭环检测的方法.使用加入旋转不变性的FAST特征点和BRIEF描述子进行双目深度估计;引入局部地图的概念,使用单帧激光雷达数据与局部地图进行匹配,提高SLAM前端的精度.使用基于词袋(bag of words,BOW)模型的k叉树字典评估图片相似度从而完成闭环检测,最后构建全局优化问题并求解.与主流开源激光雷达SLAM算法的对比实验表明,研究内容改善了只使用激光雷达数据进行闭环检测的方法在相似度较高场景下失效的问题,并且在较大面积场景运行效果明显优于基于滤波的SLAM算法.展开更多
文摘同步定位与地图构建(Simultaneous Location and Mapping,SLAM)是机器人在未知环境中实现自我导航能力的重要保证。目前SLAM算法使用的主传感器基本是激光雷达或视觉相机。二者各具优劣,激光雷达能更精确地进行测距,视觉相机能反映环境丰富的纹理信息。与使用单一传感器相比,将二者融合的SLAM算法能够获得更多环境信息,达到更好的定位和建图效果。文章提出一种融合激光雷达和视觉相机的帧间匹配方法,通过在SLAM帧间匹配过程中加入地面约束以及视觉特征约束,提高帧间匹配过程精度,增强算法鲁棒性,从而提升SLAM算法整体效果。文章最后利用采集的地下停车库数据进行结果验证,与开源算法A-LOAM进行对比。结果表明,相比A-LOAM的帧间匹配方法,文章提出的方法相对位姿误差提升约30%。
文摘针对传统车辆检索方法中存在准确性和区分度较低的问题,提出了一个基于改进SURF(speeded up robust features)算法的视频车辆检索方法。在车辆视频关键帧提取的基础上,根据改进SURF算法完成车辆图像的特征提取及匹配,其中包含改进FAST(features from accelerated segment test)特征点检测、SURF特征向量提取以及最近邻查询方法来进行特征点的匹配;通过计算比较待检索车辆图像与数据库车辆图像的相似度,算法完成图像筛选并反馈检索结果。实验结果表明:针对交通监控视频中待检索车辆,该方法能够较为准确地进行检索并反馈结果。
文摘针对ORB(oriented FAST and rotated BRIEF)特征匹配算法在实时性要求较高领域效果不佳以及在复杂光照环境下匹配精确率较低的问题,提出了一种基于改进FAST(features from accelerated segment test)检测的ORB算法。首先,对待处理的灰度图像进行分类,剔除掉部分灰度变化率较低的区域,然后提取FAST特征点并计算描述子,最后采用汉明距离完成匹配。此外,在提取FAST特征点时,设计了一种自适应半径,利用图像对比度自适应调整检测半径,当图像对比度突变时依然能够保证期望的特征点数量。实验结果表明,改进后的ORB算法匹配时间缩短了16.47%,大幅提高了在复杂光照环境下的匹配精确率,具有较强的鲁棒性和实时性。
文摘为进一步提升网络入侵检测效果,提出一种融合FAST特征选择与自适应二进制量子引力搜索支持向量机的(FAST-ABQGSA-SVM)网络入侵检测算法。利用FAST算法过滤掉原始特征集中冗余无关的特征形成候选特征子集,基于组合优化策略采用自适应二进制量子引力搜索算法对候选特征子集与SVM分类器参数进行组合优化。在ABQGSA反复学习寻优过程中,采取动态自适应波动式调整策略更新量子旋转角以平衡算法全局搜索能力和局部搜索能力;同时为提升算法的自适应变异能力,设计与进化程度及个体适应度值相关的自适应变异概率,当种群进化出现停滞时及时引入量子位离散交叉操作帮助种群摆脱局部极值。通过KDD CUP 99仿真实验表明,所提出的FAST-ABQGSA-SVM算法较其他同类型检测算法具有更好的鲁棒性、学习精度以及检测效果。
文摘针对基于图优化的激光SLAM算法在高相似度的场景中闭环检测出错的问题,提出使用双目相机进行闭环检测的方法.使用加入旋转不变性的FAST特征点和BRIEF描述子进行双目深度估计;引入局部地图的概念,使用单帧激光雷达数据与局部地图进行匹配,提高SLAM前端的精度.使用基于词袋(bag of words,BOW)模型的k叉树字典评估图片相似度从而完成闭环检测,最后构建全局优化问题并求解.与主流开源激光雷达SLAM算法的对比实验表明,研究内容改善了只使用激光雷达数据进行闭环检测的方法在相似度较高场景下失效的问题,并且在较大面积场景运行效果明显优于基于滤波的SLAM算法.