期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
FACS-iChip:a high-efficiency iChip system for microbial‘dark matter’mining 被引量:3
1
作者 Haoze Liu Ran Xue +4 位作者 Yiling Wang Erinne Stirling Shudi Ye Jianming Xu Bin Ma 《Marine Life Science & Technology》 2021年第2期162-168,共7页
The isolation chip method(iChip)provides a novel approach for culturing previously uncultivable microorganisms;this method is currently limited by the user being unable to ensure single-cell loading within individual ... The isolation chip method(iChip)provides a novel approach for culturing previously uncultivable microorganisms;this method is currently limited by the user being unable to ensure single-cell loading within individual wells.To address this limitation,we integrated flow cytometry-based fluorescence-activated cell sorting with a modified iChip(FACS-iChip)to effectively mine microbial dark matter in soils.This method was used for paddy soils with the aim of mining uncultivable microorganisms and making preliminary comparisons between the cultured microorganisms and the bulk soil via 16S rRNA gene sequencing.Results showed that the FACS-iChip achieved a culture recovery rate of almost 40%and a culture retrieval rate of 25%.Although nearly 500 strains were cultured from 19 genera with 8 FACS-iChip plates,only six genera could be identified via 16S rRNA gene amplification.This result suggests that the FACS-iChip is capable of detecting strains in the currently dead spaces of PCR-based sequencing technology.We,therefore,conclude that the FACS-iChip system provides a highly efficient and readily available approach for microbial‘dark matter’mining. 展开更多
关键词 facs-ichip Microbial‘dark matter’ In situ cultivation Single cell sorting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部