Based on the extreme forecast index (EFI) of ECMWF, the “observed” EFI (OEFI) of observation is defined and the EFI is calibrated. Then the EFI equivalent percentile (EFIEP) and EFI equivalent quantile (EFIEQ) are d...Based on the extreme forecast index (EFI) of ECMWF, the “observed” EFI (OEFI) of observation is defined and the EFI is calibrated. Then the EFI equivalent percentile (EFIEP) and EFI equivalent quantile (EFIEQ) are designed to forecast the daily extreme precipitation quantitatively. The formulation indicates that the EFIEP is correlated not only to the EFI but also to the proportion of no precipitation. This characteristic is prominent as two areas with nearly same EFIs but different proportions of no precipitation. Cases study shows that the EFIEP can forecast reliable percentile of daily precipitation and 100% percentiles are forecasted for over max extreme events. The EFIEQ is a considerable tool for quantitative precipitation forecast (QPF). Compared to the probabilistic forecast of ensemble prediction system (EPS), it is quantitative and synthesizes the advantage of extreme precipitation location forecast of EPS. Using the observations of 2311 stations of China in 2016 to verify the EFIEP and EFIEQ, the results show that the forecast biases are around 1. The threat scores (TS) for 20 years return period events are about 0.21 and 0.07 for 36 and 180 hours lead times respectively. The equivalent threat scores (ETS) are all larger than 0 and nearly equal to the TS. The TS for heavy rainfall are 0.23 and 0.07 for 36 and 180 lead times respectively. The scores are better than those of high resolution deterministic model (HRDet) and show significant forecast skills for quantitative forecast of extreme daily precipitation.展开更多
评估分析了欧洲中期天气预报中心(European Centre for Medium-range Weather Forecasts,ECMWF)细网格模式(以下简称EC-thin)在长三角地区汛期(5—9月)的暴雨预报评分及ECMWF降水极端天气预报指数(EFI)对暴雨预警的指示作用。研究发现:(...评估分析了欧洲中期天气预报中心(European Centre for Medium-range Weather Forecasts,ECMWF)细网格模式(以下简称EC-thin)在长三角地区汛期(5—9月)的暴雨预报评分及ECMWF降水极端天气预报指数(EFI)对暴雨预警的指示作用。研究发现:(1) EC-thin降水和降水EFI对暴雨预报的ETS评分随着预报时效的延长而明显降低,在短时效内,细网格模式降水预报占优,超过60 h后,降水EFI的评分相对更好。(2)对EC-thin降水而言,在不同的预报时效采用不同的降水阈值来预报暴雨,可望达到最佳的评分效果。短期时效内该阈值随着预报时效的延长,大致从55 mm逐渐下降到35 mm。(3)对于降水EFI而言,12—36 h内EFI为0.65~0.7时,暴雨预报ETS评分最高。随着预报时效的延长逐渐下降,60—84 h内EFI为0.55~0.6时,暴雨预报ETS评分最高。(4)在不同预报时效内,采用合理的方式和阈值综合考虑EC-thin降水和降水EFI,可望得到更高的暴雨预报评分。展开更多
文摘Based on the extreme forecast index (EFI) of ECMWF, the “observed” EFI (OEFI) of observation is defined and the EFI is calibrated. Then the EFI equivalent percentile (EFIEP) and EFI equivalent quantile (EFIEQ) are designed to forecast the daily extreme precipitation quantitatively. The formulation indicates that the EFIEP is correlated not only to the EFI but also to the proportion of no precipitation. This characteristic is prominent as two areas with nearly same EFIs but different proportions of no precipitation. Cases study shows that the EFIEP can forecast reliable percentile of daily precipitation and 100% percentiles are forecasted for over max extreme events. The EFIEQ is a considerable tool for quantitative precipitation forecast (QPF). Compared to the probabilistic forecast of ensemble prediction system (EPS), it is quantitative and synthesizes the advantage of extreme precipitation location forecast of EPS. Using the observations of 2311 stations of China in 2016 to verify the EFIEP and EFIEQ, the results show that the forecast biases are around 1. The threat scores (TS) for 20 years return period events are about 0.21 and 0.07 for 36 and 180 hours lead times respectively. The equivalent threat scores (ETS) are all larger than 0 and nearly equal to the TS. The TS for heavy rainfall are 0.23 and 0.07 for 36 and 180 lead times respectively. The scores are better than those of high resolution deterministic model (HRDet) and show significant forecast skills for quantitative forecast of extreme daily precipitation.