The prognosis of hepatocellular carcinoma (HCC) still remains dismal, although many advances in its clinical study have been made. It is important for tumor control to identify the factors that predispose patients to ...The prognosis of hepatocellular carcinoma (HCC) still remains dismal, although many advances in its clinical study have been made. It is important for tumor control to identify the factors that predispose patients to death. With new discoveries in cancer biology, the pathological and biological prognostic factors of HCC have been studied quite extensively. Analyzing molecular markers (biomarkers) with prognostic significance is a complementary method. A large number of molecular factors have been shown to associate with the invasiveness of HCC, and have potential prognostic significance. One important aspect is the analysis of molecular markers for the cellular malignancy phenotype. These include alterations in DNA ploidy, cellular proliferation markers (PCNA, Ki-67, Mcm2, MIB1, MIA, and CSE1L/CAS protein), nuclear morphology, the p53 gene and its related molecule MD M2, other cell cycle regulators (cyclin A, cyclin D, cyclin E, cdc2, p27, p73), oncogenes and their receptors (such as ras, c-myc, c-fms, HGF, c-met, and erb-B receptor family members), apoptosis related factors (Fas and FasL), as well as telomerase activity. Another important aspect is the analysis of molecular markers involved in the process of cancer invasion and metastasis. Adhesion molecules (E-cadherin, catenins, serum intercellular adhesion molecule-1, CD44 variants), proteinases involved in the degradation of extracellular matrix (MMP-2, MMP-9, uPA, uPAR, PAI), as well as other molecules have been regarded as biomarkers for the malignant phenotype of HCC, and are related to prognosis and therapeutic outcomes. Tumor angiogenesis is critical to both the growth and metastasis of cancers including HCC, and has drawn much attention in recent years. Many angiogenesis-related markers, such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), platelet-derived endothelial cell growth factor (PD-ECGF), thrombospondin (TSP), angiogenin, pleiotrophin, and endostatin (ES) levels, as well as intratumor microvessel density (M展开更多
There have been considerable recent advances towards a better understanding of the complex cellular and molecular network underlying liver fibrogenesis.Recent data indicate that the termination of fibrogenic processes...There have been considerable recent advances towards a better understanding of the complex cellular and molecular network underlying liver fibrogenesis.Recent data indicate that the termination of fibrogenic processes and the restoration of deficient fibrolytic pathways may allow the reversal of advanced fibrosis and even cirrhosis.Therefore,efforts have been made to better clarify the cellular and molecular mechanisms that are involved in liver fibrosis.Activation of hepatic stellate cells(HSCs)remains a central event in fibrosis,complemented by other sources of matrix-producing cells,including portal fibroblasts,fibrocytes and bone marrow-derived myofibroblasts.These cells converge in a complex interaction with neighboring cells to provoke scarring in response to persistent injury.Defining the interaction of different cell types,revealing the effects of cytokines on these cells and characterizing the regulatory mechanisms that control gene expression in activated HSCs will enable the discovery of new therapeutic targets.Moreover,the characterization of different pathways associated with different etiologies aid in the development of disease-specific therapies.This article outlines recent advances regarding the cellular and molecular mechanisms involved in liver fibrosis that may be translated into future therapies.The pathogenesis of liver fibrosis associated with alcoholic liver disease,non-alcoholic fatty liver disease and viral hepatitis are also discussed to emphasize the various mechanisms involved in liver fibrosis.展开更多
Hepatic fibrosis is a pathological lesion, characterized by the progressive accumulation of extracellularmatrix (ECM) in the perisinusoidal space and it is a major problem in chronic liver diseases. Phenotypicactiva...Hepatic fibrosis is a pathological lesion, characterized by the progressive accumulation of extracellularmatrix (ECM) in the perisinusoidal space and it is a major problem in chronic liver diseases. Phenotypicactivation of hepatic stellate cells (HSC) plays a central role in the progression of hepatic fibrosis. Retardation of proliferation and clearance of activated HSCs from the injured liver is an appropriate therapeuticstrategy for the resolution and treatment of hepatic fibrosis. Clearance of activated HSCs from the injuredliver by autophagy inhibitors, proapoptotic agents and senescence inducers with the high affinity towardthe activated HSCs may be the novel therapeutic strategy for the treatment of hepatic fibrosis in the nearfuture.展开更多
Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMP) play a significant role in regulating angiogenesis, the process of new blood vessel formation. Interstitial collagenase (MMP-1), 72 k...Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMP) play a significant role in regulating angiogenesis, the process of new blood vessel formation. Interstitial collagenase (MMP-1), 72 kDa gelatinase A/type IV collagenase (MMP-2), and 92 kDa gelatinase B/type IV collagenase (MMP-9) dissolve extracellular matrix (ECM) and may initiate and Promote angiogenesis. TIMP-1, TIMP-2, TIMP-3, and possibly,TIMP-4 inhibit neovascularisation. A new paradigm is emerging that matrilysin (MMP-7), MMP-9, and metalloelastase (MMP-12) may block angiogehesis by converting plasndnogen to angiostatin, which is one of the most potent angiogenesis antagonists. MMPs and TIMPs play a complex role in regulating angiogenesis. An understanding of the biochemical and cellular pathways and mechanisms of angiogenesis will provide importal information to allow the control of angiogenesis, e.g. the stimulation of angiogenesis for coronary collateral circulation formation; while the inhibition for treating arthritis and cancer.展开更多
文摘The prognosis of hepatocellular carcinoma (HCC) still remains dismal, although many advances in its clinical study have been made. It is important for tumor control to identify the factors that predispose patients to death. With new discoveries in cancer biology, the pathological and biological prognostic factors of HCC have been studied quite extensively. Analyzing molecular markers (biomarkers) with prognostic significance is a complementary method. A large number of molecular factors have been shown to associate with the invasiveness of HCC, and have potential prognostic significance. One important aspect is the analysis of molecular markers for the cellular malignancy phenotype. These include alterations in DNA ploidy, cellular proliferation markers (PCNA, Ki-67, Mcm2, MIB1, MIA, and CSE1L/CAS protein), nuclear morphology, the p53 gene and its related molecule MD M2, other cell cycle regulators (cyclin A, cyclin D, cyclin E, cdc2, p27, p73), oncogenes and their receptors (such as ras, c-myc, c-fms, HGF, c-met, and erb-B receptor family members), apoptosis related factors (Fas and FasL), as well as telomerase activity. Another important aspect is the analysis of molecular markers involved in the process of cancer invasion and metastasis. Adhesion molecules (E-cadherin, catenins, serum intercellular adhesion molecule-1, CD44 variants), proteinases involved in the degradation of extracellular matrix (MMP-2, MMP-9, uPA, uPAR, PAI), as well as other molecules have been regarded as biomarkers for the malignant phenotype of HCC, and are related to prognosis and therapeutic outcomes. Tumor angiogenesis is critical to both the growth and metastasis of cancers including HCC, and has drawn much attention in recent years. Many angiogenesis-related markers, such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), platelet-derived endothelial cell growth factor (PD-ECGF), thrombospondin (TSP), angiogenin, pleiotrophin, and endostatin (ES) levels, as well as intratumor microvessel density (M
文摘There have been considerable recent advances towards a better understanding of the complex cellular and molecular network underlying liver fibrogenesis.Recent data indicate that the termination of fibrogenic processes and the restoration of deficient fibrolytic pathways may allow the reversal of advanced fibrosis and even cirrhosis.Therefore,efforts have been made to better clarify the cellular and molecular mechanisms that are involved in liver fibrosis.Activation of hepatic stellate cells(HSCs)remains a central event in fibrosis,complemented by other sources of matrix-producing cells,including portal fibroblasts,fibrocytes and bone marrow-derived myofibroblasts.These cells converge in a complex interaction with neighboring cells to provoke scarring in response to persistent injury.Defining the interaction of different cell types,revealing the effects of cytokines on these cells and characterizing the regulatory mechanisms that control gene expression in activated HSCs will enable the discovery of new therapeutic targets.Moreover,the characterization of different pathways associated with different etiologies aid in the development of disease-specific therapies.This article outlines recent advances regarding the cellular and molecular mechanisms involved in liver fibrosis that may be translated into future therapies.The pathogenesis of liver fibrosis associated with alcoholic liver disease,non-alcoholic fatty liver disease and viral hepatitis are also discussed to emphasize the various mechanisms involved in liver fibrosis.
文摘Hepatic fibrosis is a pathological lesion, characterized by the progressive accumulation of extracellularmatrix (ECM) in the perisinusoidal space and it is a major problem in chronic liver diseases. Phenotypicactivation of hepatic stellate cells (HSC) plays a central role in the progression of hepatic fibrosis. Retardation of proliferation and clearance of activated HSCs from the injured liver is an appropriate therapeuticstrategy for the resolution and treatment of hepatic fibrosis. Clearance of activated HSCs from the injuredliver by autophagy inhibitors, proapoptotic agents and senescence inducers with the high affinity towardthe activated HSCs may be the novel therapeutic strategy for the treatment of hepatic fibrosis in the nearfuture.
文摘Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMP) play a significant role in regulating angiogenesis, the process of new blood vessel formation. Interstitial collagenase (MMP-1), 72 kDa gelatinase A/type IV collagenase (MMP-2), and 92 kDa gelatinase B/type IV collagenase (MMP-9) dissolve extracellular matrix (ECM) and may initiate and Promote angiogenesis. TIMP-1, TIMP-2, TIMP-3, and possibly,TIMP-4 inhibit neovascularisation. A new paradigm is emerging that matrilysin (MMP-7), MMP-9, and metalloelastase (MMP-12) may block angiogehesis by converting plasndnogen to angiostatin, which is one of the most potent angiogenesis antagonists. MMPs and TIMPs play a complex role in regulating angiogenesis. An understanding of the biochemical and cellular pathways and mechanisms of angiogenesis will provide importal information to allow the control of angiogenesis, e.g. the stimulation of angiogenesis for coronary collateral circulation formation; while the inhibition for treating arthritis and cancer.