Overstraining gun tubes has a twofold advantage. First, it enables the increase of the Safe Maximum Pressure(SMP) in the tube, resulting in a higher muzzle velocity which extends the gun's range and its projectile...Overstraining gun tubes has a twofold advantage. First, it enables the increase of the Safe Maximum Pressure(SMP) in the tube, resulting in a higher muzzle velocity which extends the gun's range and its projectile kinetic energy. Second, it reduces the tube's susceptibility to internal cracking which prolongs its fatigue life. Unfortunately, autofrettage also bears an inherent detrimental effect as it considerably increases the tensile hoop stress at the outer portion of the barrel's wall, which enhances external cracking of the tube by increasing the prevailing Stress Intensity Factor(SIF). In order to quantify this disadvantageous effect, 3-D Mode I SIFs distributions along the front of a single external radial semielliptical crack initiating from the outer surface of an autofrettaged modern gun barrel, overstrained by either the Swage or the Hydraulic autofrettage processes, are evaluated. The analysis is performed by the finite element(FE) method, using singular elements along the crack front. Innovative residual stress fields(RSFs), incorporating the Bauschinger effect for both types of autofrettage are applied to the barrel.Hill's [1] RSF is also applied to the tube for comparison reasons. All three RSFs are incorporated in the FE analysis, using equivalent temperature fields, Values for K_(IA)-the SIF resulting from the tensile residual stresses induced by autofrettage are evaluated for: a typical barrel of radii ratio R_o/R_i = 2, crack depth to wall-thickness ratios(a/t = 0.005-0.1),crack ellipticities(a/c = 0.2-1.0),and five levels of Swage,Hydraulic and Hill's autofrettage(e = 40%,60%,70%,80%,and 100%). In total,375 different 3-D cases are analyzed. The analysis demonstrates undoubtedly the detrimental effect of all types of autofrettage in increasing the prevailing effective stress intensity factor of external cracks, resulting in crack initiation enhancement and crack growth rate acceleration which considerably shortens the total fatigue life of the barrel. Nonetheless, the detrimental effect is auto展开更多
Using Stroh's formalism the simple explicit expressions of Green's functions for a 2D piezoelectric body with two semi-infinite fixed conductor cracks subjected to a generalized line force were given. The Coulomb fo...Using Stroh's formalism the simple explicit expressions of Green's functions for a 2D piezoelectric body with two semi-infinite fixed conductor cracks subjected to a generalized line force were given. The Coulomb force acting on the free line charge aroused by the piezoelectricity and the distributed boundary polarization charges was discussed at first. Interactions between two singularities with free charge (s) located in a region with external cracks were studied, too. The numerical results show that the Coulomb force for two or more singularities with one free charge at least will have much influence on the electromechanical fields in piezoelectric media when these singularities move closely with each other and therefore cannot be overlooked again. The solutions obtained are valid not only for plane and anti-plane problems but also for coupled problems between in-plane and out-of-plane deformations.展开更多
By using Stroh's formalism and the conformal mapping technique,this paper derives simple exphcit Green's functions of a piezoelectric anisotropic body with a free or fixed hyperbolic boundary.The corresponding...By using Stroh's formalism and the conformal mapping technique,this paper derives simple exphcit Green's functions of a piezoelectric anisotropic body with a free or fixed hyperbolic boundary.The corresponding elastic fields in the medium are obtained,too.In particular,degenerated solutions of an ex- ternal crack from those of a hyperbolic problem are analysed in detail.Then the singular stress fields and the fracture mechanics parameters are found.The solutions obtained are valid not only for plane and antiplane problems but also for the coupled ones between inplane and outplane deformations.展开更多
Using the boundary integral equation method, the problem of an external circular crack in a three_dimensional infinite elastic body under asymmetric loadings is investigated. The two_dimensional singular boundary inte...Using the boundary integral equation method, the problem of an external circular crack in a three_dimensional infinite elastic body under asymmetric loadings is investigated. The two_dimensional singular boundary integral equations of the problem were reduced to a system of Abel integral equations by means of Fourier series and hypergeometric functions. The exact solutions of stress intensity factors are obtained for the problem of an external circular crack under asymmetric loadings, which are even more universal than the results obtained by the use of Hankel transform method. The results demonstrate that the boundary integral equation method has great potential as a new analytic method.展开更多
Using the boundary integral equation method, the problem of an external circular crack in a three-dimensional infinite elastic body under asymmetric loadings is investigated. The two-dimensional singular boundary inte...Using the boundary integral equation method, the problem of an external circular crack in a three-dimensional infinite elastic body under asymmetric loadings is investigated. The two-dimensional singular boundary integral equations of the problem were reduced to a system of Abel integral equations by means of Fourier series and hypergeometric functions. The exact solutions of stress intensity factors ore obtained for the problem of an external circular crack under asymmetric loadings, which are even more universal than the results obtained by the use of Hankel transform method. The results demonstrate that the boundary integral equation method has great potential as a new analytic method.展开更多
文摘Overstraining gun tubes has a twofold advantage. First, it enables the increase of the Safe Maximum Pressure(SMP) in the tube, resulting in a higher muzzle velocity which extends the gun's range and its projectile kinetic energy. Second, it reduces the tube's susceptibility to internal cracking which prolongs its fatigue life. Unfortunately, autofrettage also bears an inherent detrimental effect as it considerably increases the tensile hoop stress at the outer portion of the barrel's wall, which enhances external cracking of the tube by increasing the prevailing Stress Intensity Factor(SIF). In order to quantify this disadvantageous effect, 3-D Mode I SIFs distributions along the front of a single external radial semielliptical crack initiating from the outer surface of an autofrettaged modern gun barrel, overstrained by either the Swage or the Hydraulic autofrettage processes, are evaluated. The analysis is performed by the finite element(FE) method, using singular elements along the crack front. Innovative residual stress fields(RSFs), incorporating the Bauschinger effect for both types of autofrettage are applied to the barrel.Hill's [1] RSF is also applied to the tube for comparison reasons. All three RSFs are incorporated in the FE analysis, using equivalent temperature fields, Values for K_(IA)-the SIF resulting from the tensile residual stresses induced by autofrettage are evaluated for: a typical barrel of radii ratio R_o/R_i = 2, crack depth to wall-thickness ratios(a/t = 0.005-0.1),crack ellipticities(a/c = 0.2-1.0),and five levels of Swage,Hydraulic and Hill's autofrettage(e = 40%,60%,70%,80%,and 100%). In total,375 different 3-D cases are analyzed. The analysis demonstrates undoubtedly the detrimental effect of all types of autofrettage in increasing the prevailing effective stress intensity factor of external cracks, resulting in crack initiation enhancement and crack growth rate acceleration which considerably shortens the total fatigue life of the barrel. Nonetheless, the detrimental effect is auto
文摘Using Stroh's formalism the simple explicit expressions of Green's functions for a 2D piezoelectric body with two semi-infinite fixed conductor cracks subjected to a generalized line force were given. The Coulomb force acting on the free line charge aroused by the piezoelectricity and the distributed boundary polarization charges was discussed at first. Interactions between two singularities with free charge (s) located in a region with external cracks were studied, too. The numerical results show that the Coulomb force for two or more singularities with one free charge at least will have much influence on the electromechanical fields in piezoelectric media when these singularities move closely with each other and therefore cannot be overlooked again. The solutions obtained are valid not only for plane and anti-plane problems but also for coupled problems between in-plane and out-of-plane deformations.
文摘By using Stroh's formalism and the conformal mapping technique,this paper derives simple exphcit Green's functions of a piezoelectric anisotropic body with a free or fixed hyperbolic boundary.The corresponding elastic fields in the medium are obtained,too.In particular,degenerated solutions of an ex- ternal crack from those of a hyperbolic problem are analysed in detail.Then the singular stress fields and the fracture mechanics parameters are found.The solutions obtained are valid not only for plane and antiplane problems but also for the coupled ones between inplane and outplane deformations.
文摘Using the boundary integral equation method, the problem of an external circular crack in a three_dimensional infinite elastic body under asymmetric loadings is investigated. The two_dimensional singular boundary integral equations of the problem were reduced to a system of Abel integral equations by means of Fourier series and hypergeometric functions. The exact solutions of stress intensity factors are obtained for the problem of an external circular crack under asymmetric loadings, which are even more universal than the results obtained by the use of Hankel transform method. The results demonstrate that the boundary integral equation method has great potential as a new analytic method.
基金国家自然科学基金,West Foundation of Ministry Education of China
文摘Using the boundary integral equation method, the problem of an external circular crack in a three-dimensional infinite elastic body under asymmetric loadings is investigated. The two-dimensional singular boundary integral equations of the problem were reduced to a system of Abel integral equations by means of Fourier series and hypergeometric functions. The exact solutions of stress intensity factors ore obtained for the problem of an external circular crack under asymmetric loadings, which are even more universal than the results obtained by the use of Hankel transform method. The results demonstrate that the boundary integral equation method has great potential as a new analytic method.