阐述一种适用于非均质材料力学性能分析的扩展的多尺度有限元法(Extended Multiscale Finite Element Method,EMsFEM)的基本原理.该方法的基本思想是利用数值方法构造能反映胞体单元内部材料非均质影响的多尺度基函数,在此基础上求得粗...阐述一种适用于非均质材料力学性能分析的扩展的多尺度有限元法(Extended Multiscale Finite Element Method,EMsFEM)的基本原理.该方法的基本思想是利用数值方法构造能反映胞体单元内部材料非均质影响的多尺度基函数,在此基础上求得粗网格层次的等效单元刚度阵,从而在粗网格尺度上对原问题进行求解,很大程度地减少计算量.以该方法进行的具有周期和随机微观结构的材料计算示例,通过与传统有限元法的结果比较,说明这一方法的有效性.EMsFEM的优势在于,能容易地进行降尺度计算,可较准确地求得单元内部的微观应力应变信息,在非均质材料强度和非线性分析中有很大的应用潜力.展开更多
An extended multiscale finite element method (EMsFEM) is developed for solving the mechanical problems of heterogeneous materials in elasticity.The underlying idea of the method is to construct numerically the multi...An extended multiscale finite element method (EMsFEM) is developed for solving the mechanical problems of heterogeneous materials in elasticity.The underlying idea of the method is to construct numerically the multiscale base functions to capture the small-scale features of the coarse elements in the multiscale finite element analysis.On the basis of our existing work for periodic truss materials, the construction methods of the base functions for continuum heterogeneous materials are systematically introduced. Numerical experiments show that the choice of boundary conditions for the construction of the base functions has a big influence on the accuracy of the multiscale solutions, thus,different kinds of boundary conditions are proposed. The efficiency and accuracy of the developed method are validated and the results with different boundary conditions are verified through extensive numerical examples with both periodic and random heterogeneous micro-structures.Also, a consistency test of the method is performed numerically. The results show that the EMsFEM can effectively obtain the macro response of the heterogeneous structures as well as the response in micro-scale,especially under the periodic boundary conditions.展开更多
论文应用拓展的多尺度有限元法(Extended Multiscale Finite Element Method),以微观构件的截面积为设计变量,研究了体积约束下点阵材料构成结构的最小柔顺性设计问题.建立了适应具有复杂几何形状和载荷边界的点阵材料结构的优化模型,...论文应用拓展的多尺度有限元法(Extended Multiscale Finite Element Method),以微观构件的截面积为设计变量,研究了体积约束下点阵材料构成结构的最小柔顺性设计问题.建立了适应具有复杂几何形状和载荷边界的点阵材料结构的优化模型,应用序列二次规划算法对悬臂梁和L形梁算例在线性边界条件和周期性边界条件下进行了优化设计,讨论了点阵材料微结构尺寸效应对优化结果的影响,验证了优化模型和求解算法的可靠性,为点阵材料应用于复杂实际工程结构的优化设计提供了新的技术手段.展开更多
文摘阐述一种适用于非均质材料力学性能分析的扩展的多尺度有限元法(Extended Multiscale Finite Element Method,EMsFEM)的基本原理.该方法的基本思想是利用数值方法构造能反映胞体单元内部材料非均质影响的多尺度基函数,在此基础上求得粗网格层次的等效单元刚度阵,从而在粗网格尺度上对原问题进行求解,很大程度地减少计算量.以该方法进行的具有周期和随机微观结构的材料计算示例,通过与传统有限元法的结果比较,说明这一方法的有效性.EMsFEM的优势在于,能容易地进行降尺度计算,可较准确地求得单元内部的微观应力应变信息,在非均质材料强度和非线性分析中有很大的应用潜力.
基金supported by the National Natural Science Foundation(10721062,11072051,90715037,10728205,91015003, 51021140004)the Program of Introducing Talents of Discipline to Universities(B08014)the National Key Basic Research Special Foundation of China(2010CB832704).
文摘An extended multiscale finite element method (EMsFEM) is developed for solving the mechanical problems of heterogeneous materials in elasticity.The underlying idea of the method is to construct numerically the multiscale base functions to capture the small-scale features of the coarse elements in the multiscale finite element analysis.On the basis of our existing work for periodic truss materials, the construction methods of the base functions for continuum heterogeneous materials are systematically introduced. Numerical experiments show that the choice of boundary conditions for the construction of the base functions has a big influence on the accuracy of the multiscale solutions, thus,different kinds of boundary conditions are proposed. The efficiency and accuracy of the developed method are validated and the results with different boundary conditions are verified through extensive numerical examples with both periodic and random heterogeneous micro-structures.Also, a consistency test of the method is performed numerically. The results show that the EMsFEM can effectively obtain the macro response of the heterogeneous structures as well as the response in micro-scale,especially under the periodic boundary conditions.
文摘论文应用拓展的多尺度有限元法(Extended Multiscale Finite Element Method),以微观构件的截面积为设计变量,研究了体积约束下点阵材料构成结构的最小柔顺性设计问题.建立了适应具有复杂几何形状和载荷边界的点阵材料结构的优化模型,应用序列二次规划算法对悬臂梁和L形梁算例在线性边界条件和周期性边界条件下进行了优化设计,讨论了点阵材料微结构尺寸效应对优化结果的影响,验证了优化模型和求解算法的可靠性,为点阵材料应用于复杂实际工程结构的优化设计提供了新的技术手段.