The issues of event-triggered exponential L1 filtering are studied for a class of networked linear switched systems.An event-triggered mechanism is proposed to enhance resource utilization in transmission,and save the...The issues of event-triggered exponential L1 filtering are studied for a class of networked linear switched systems.An event-triggered mechanism is proposed to enhance resource utilization in transmission,and save the communication cost of systems as well.Then,the filtering error system is reconstructed as a switched delay system with bounded disturbance through the input delay system approach.By resorting to the Lyapunov-Krasovskii functional approach and the average dwell time(ADT)technique,some interesting results are derived to guarantee the exponential stability with a prescribed L1 disturbance rejection level.Further,an event-triggered exponential L1 filter is designed via solving a set of feasible linear matrix inequalities(LMIs).Finally,the efficiency of the proposed results is verified through a numerical example and a PWM-driven boost converter circuit system.展开更多
A numerical simulation is presented to investigate the effect of an exponentially varying magnetic field on three dimensional flow of Zinc Oxide-Society of Automotive Engineers 50 nanolubricant(ZnO-SAE50nano-lubrican...A numerical simulation is presented to investigate the effect of an exponentially varying magnetic field on three dimensional flow of Zinc Oxide-Society of Automotive Engineers 50 nanolubricant(ZnO-SAE50nano-lubricant)past a stretching sheet.Subsequently the impact of homogenous and heterogeneous reactions on the flow of nanolubricant concerned has also taken into account.The study has been strengthened by introducing the convection mechanism and the effect of thermal radiation.Similarity transformations are employed to transform the set of partial governing equations into the set of ordinary differential equations.The suitable boundary conditions are used to obtain the numerical solution.The numerical results are simulated using Matlab bvp4c solver and validated with the existing results.The flow characteristics,thermal characteristics,nanoparticle concentration and some non-dimensional numbers are computed under the influence of the pertinent parameters.The valuable outcome of the current study is that augmented magnetic field strength is the root cause of diminishing axial as well as transverse velocities and growing trend of fluid temperature.Also,the coeffi-cients of homogenous and heterogeneous reactions are boons for ascending concentration boundary layer.展开更多
Continuous response of range query on steaming data provides useful information for many practical applications as well as the risk of privacy disclosure.The existing research on differential privacy streaming data pu...Continuous response of range query on steaming data provides useful information for many practical applications as well as the risk of privacy disclosure.The existing research on differential privacy streaming data publication mostly pay close attention to boosting query accuracy,but pay less attention to query efficiency,and ignore the effect of timeliness on data weight.In this paper,we propose an effective algorithm of differential privacy streaming data publication under exponential decay mode.Firstly,by introducing the Fenwick tree to divide and reorganize data items in the stream,we achieve a constant time complexity for inserting a new item and getting the prefix sum.Meanwhile,we achieve time complicity linear to the number of data item for building a tree.After that,we use the advantage of matrix mechanism to deal with relevant queries and reduce the global sensitivity.In addition,we choose proper diagonal matrix further improve the range query accuracy.Finally,considering about exponential decay,every data item is weighted by the decay factor.By putting the Fenwick tree and matrix optimization together,we present complete algorithm for differentiate private real-time streaming data publication.The experiment is designed to compare the algorithm in this paper with similar algorithms for streaming data release in exponential decay.Experimental results show that the algorithm in this paper effectively improve the query efficiency while ensuring the quality of the query.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant Nos.6177322561773236,61873331,61803225in part by the Taishan Scholar Project of Shandong Province under Grant No.TSQN20161033。
文摘The issues of event-triggered exponential L1 filtering are studied for a class of networked linear switched systems.An event-triggered mechanism is proposed to enhance resource utilization in transmission,and save the communication cost of systems as well.Then,the filtering error system is reconstructed as a switched delay system with bounded disturbance through the input delay system approach.By resorting to the Lyapunov-Krasovskii functional approach and the average dwell time(ADT)technique,some interesting results are derived to guarantee the exponential stability with a prescribed L1 disturbance rejection level.Further,an event-triggered exponential L1 filter is designed via solving a set of feasible linear matrix inequalities(LMIs).Finally,the efficiency of the proposed results is verified through a numerical example and a PWM-driven boost converter circuit system.
文摘A numerical simulation is presented to investigate the effect of an exponentially varying magnetic field on three dimensional flow of Zinc Oxide-Society of Automotive Engineers 50 nanolubricant(ZnO-SAE50nano-lubricant)past a stretching sheet.Subsequently the impact of homogenous and heterogeneous reactions on the flow of nanolubricant concerned has also taken into account.The study has been strengthened by introducing the convection mechanism and the effect of thermal radiation.Similarity transformations are employed to transform the set of partial governing equations into the set of ordinary differential equations.The suitable boundary conditions are used to obtain the numerical solution.The numerical results are simulated using Matlab bvp4c solver and validated with the existing results.The flow characteristics,thermal characteristics,nanoparticle concentration and some non-dimensional numbers are computed under the influence of the pertinent parameters.The valuable outcome of the current study is that augmented magnetic field strength is the root cause of diminishing axial as well as transverse velocities and growing trend of fluid temperature.Also,the coeffi-cients of homogenous and heterogeneous reactions are boons for ascending concentration boundary layer.
基金This work is supported,in part,by the National Natural Science Foundation of China under grant numbers 61300026in part,by the Natural Science Foundation of Fujian Province under grant numbers 2017J01754, 2018J01797.
文摘Continuous response of range query on steaming data provides useful information for many practical applications as well as the risk of privacy disclosure.The existing research on differential privacy streaming data publication mostly pay close attention to boosting query accuracy,but pay less attention to query efficiency,and ignore the effect of timeliness on data weight.In this paper,we propose an effective algorithm of differential privacy streaming data publication under exponential decay mode.Firstly,by introducing the Fenwick tree to divide and reorganize data items in the stream,we achieve a constant time complexity for inserting a new item and getting the prefix sum.Meanwhile,we achieve time complicity linear to the number of data item for building a tree.After that,we use the advantage of matrix mechanism to deal with relevant queries and reduce the global sensitivity.In addition,we choose proper diagonal matrix further improve the range query accuracy.Finally,considering about exponential decay,every data item is weighted by the decay factor.By putting the Fenwick tree and matrix optimization together,we present complete algorithm for differentiate private real-time streaming data publication.The experiment is designed to compare the algorithm in this paper with similar algorithms for streaming data release in exponential decay.Experimental results show that the algorithm in this paper effectively improve the query efficiency while ensuring the quality of the query.