Let Pi, 1≤i≤5, be prime numbers. It is proved that every integer N that satisfies N=5 (mod 24) can be written as N=p1^2+p2^2+P3^2+p4^2 +p5^2, where │√N5-Pi│≤N^1/2-19/850+∈.
Let An∈M2(ℤ)be integral matrices such that the infinite convolution of Dirac measures with equal weightsμ{A_(n),n≥1}δA_(1)^(-1)D*δA_(1)^(-1)A_(2)^(-2)D*…is a probability measure with compact support,where D={(0,...Let An∈M2(ℤ)be integral matrices such that the infinite convolution of Dirac measures with equal weightsμ{A_(n),n≥1}δA_(1)^(-1)D*δA_(1)^(-1)A_(2)^(-2)D*…is a probability measure with compact support,where D={(0,0)^(t),(1,0)^(t),(0,1)^(t)}is the Sierpinski digit.We prove that there exists a setΛ⊂ℝ2 such that the family{e2πi〈λ,x〉:λ∈Λ} is an orthonormal basis of L^(2)(μ{A_(n),n≥1})if and only if 1/3(1,-1)A_(n)∈Z^(2)for n≥2 under some metric conditions on A_(n).展开更多
The aim of this paper is to investigate the existence and uniqueness of almost periodic solutions for the forced Rayleigh equation. By combining the theory of exponential dichotomies with Liapunov functions, we obtain...The aim of this paper is to investigate the existence and uniqueness of almost periodic solutions for the forced Rayleigh equation. By combining the theory of exponential dichotomies with Liapunov functions, we obtain an interesting result on the existence of almost periodic solutions.展开更多
We establish the exponential stability of fast traveling pulse solutions to nonlinear singularly per-turbed systems of integral differential equations arising from neuronal networks.It has been proved that expo-nentia...We establish the exponential stability of fast traveling pulse solutions to nonlinear singularly per-turbed systems of integral differential equations arising from neuronal networks.It has been proved that expo-nential stability of these orbits is equivalent to linear stability.Let (?) be the linear differential operator obtainedby linearizing the nonlinear system about its fast pulse,and let σ((?)) be the spectrum of (?).The linearizedstability criterion says that if max{Reλ:λ∈σ((?)),λ≠0}(?)-D,for some positive constant D,and λ=0 is asimple eigenvalue of (?)(ε),then the stability follows immediately (see [13] and [37]).Therefore,to establish theexponential stability of the fast pulse,it suffices to investigate the spectrum of the operator (?).It is relativelyeasy to find the continuous spectrum,but it is very difficult to find the isolated spectrum.The real part ofthe continuous spectrum has a uniformly negative upper bound,hence it causes no threat to the stability.Itremains to see if the isolated spectrum is safe.Eigenvalue functions (see [14] and [35,36]) have been a powerful tool to study the isolated spectrum of the as-sociated linear differential operators because the zeros of the eigenvalue functions coincide with the eigenvaluesof the operators.There have been some known methods to define eigenvalue functions for nonlinear systems ofreaction diffusion equations and for nonlinear dispersive wave equations.But for integral differential equations,we have to use different ideas to construct eigenvalue functions.We will use the method of variation of param-eters to construct the eigenvalue functions in the complex plane C.By analyzing the eigenvalue functions,wefind that there are no nonzero eigenvalues of (?) in {λ∈C:Reλ(?)-D} for the fast traveling pulse.Moreoverλ=0 is simple.This implies that the exponential stability of the fast orbits is true.展开更多
The purpose of this paper is to present the class of atomic basis functions(ABFs)which are of exponential type and are denoted by EFupn(x,ω).While ABFs of the algebraic type are already represented in the numerical m...The purpose of this paper is to present the class of atomic basis functions(ABFs)which are of exponential type and are denoted by EFupn(x,ω).While ABFs of the algebraic type are already represented in the numerical modeling of various problems inmathematical physics and computationalmechanics,ABFs of the exponential type have not yet been sufficiently researched.These functions,unlike the ABFs of the algebraic type Fupn(x),contain the tension parameterω,which gives them additional approximation properties.Exponential monomials up to the nth degree can be described exactly by the linear combination of the functions EFupn(x,ω).The function EFupn for n=0 is called the“mother”ABF of the exponential type,i.e.,EFup0(x,ω)≡Eup(x,ω).In other words,the functions EFupn(x,ω)are elements of the linear vector space EUPn and retain all the properties of their“mother”function Eup(x,ω).Thus,this paper,in terms of its content and purpose,can be understood as a sequel of the article by Brajcic Kurbasa et al.,which shows the basic properties and application of the basis function Eup(x,ω).This paper presents,in an analogous way,the development and application of the exponential basis functions EFupn(x,ω).Here,for the first time,expressions for calculating the values of the functions EFupn(x,ω)and their derivatives are given in a form suitable for application in numerical analyses,which is shown in the verification examples of the approximations of known functions.展开更多
This is an expository paper on algebraic aspects of exponential sums over finite fields.This is a new direction.Various examples,results and open problems are presented along the way,with particular emphasis on Gauss ...This is an expository paper on algebraic aspects of exponential sums over finite fields.This is a new direction.Various examples,results and open problems are presented along the way,with particular emphasis on Gauss periods,Kloosterman sums and one variable exponential sums.One main tool is the applications of various p-adic methods.For this reason,the author has also included a brief exposition of certain p-adic estimates of exponential sums.The material is based on the lectures given at the 2020 online number theory summer school held at Xiamen University.Notes were taken by Shaoshi Chen and Ruichen Xu.展开更多
SINCE Olsen and Lempel constructed a family of optimal key sequences (called Bent se-quences) by using the trace function over finite field in 1982, the theory of trace functionhas been widely used in spread-spectrum ...SINCE Olsen and Lempel constructed a family of optimal key sequences (called Bent se-quences) by using the trace function over finite field in 1982, the theory of trace functionhas been widely used in spread-spectrum communication and cryptology. Many papers aboutconstructing pseudorandom sequences by using trace functions were published in IEEE Trans-actions on Information Theory. The sequences (such as GMW sequences, No sequences,展开更多
The fine-structure constant α [1] is a constant in physics that plays a fundamental role in the electromagnetic interaction. It is a dimensionless constant, defined as: (1) being q the elementary charge, ε0 the vacu...The fine-structure constant α [1] is a constant in physics that plays a fundamental role in the electromagnetic interaction. It is a dimensionless constant, defined as: (1) being q the elementary charge, ε0 the vacuum permittivity, h the Planck constant and c the speed of light in vacuum. The value shown in (1) is according CODATA 2014 [2]. In this paper, it will be explained that the fine-structure constant is one of the roots of the following equation: (2) being e the mathematical constant e (the base of the natural logarithm). One of the solutions of this equation is: (3) This means that it is equal to the CODATA value in nine decimal digits (or the seven most significant ones if you prefer). And therefore, the difference between both values is: (4) This coincidence is higher in orders of magnitude than the commonly accepted necessary to validate a theory towards experimentation. As the cosine function is periodical, the Equation (2) has infinite roots and could seem the coincidence is just by chance. But as it will be shown in the paper, the separation among the different solutions is sufficiently high to disregard this possibility. It will also be shown that another elegant way to show Equation (2) is the following (being i the imaginary unit): (5) having of course the same root (3). The possible meaning of this other representation (5) will be explained.展开更多
In this paper we construct, by using the theory of exponential dichotomies, a Melnikov-type function by which we can detect the existence of homoclinic orbits for the perturbed systems x = g(x) + epsilon h(t, x, epsil...In this paper we construct, by using the theory of exponential dichotomies, a Melnikov-type function by which we can detect the existence of homoclinic orbits for the perturbed systems x = g(x) + epsilon h(t, x, epsilon). Our result of this paper may be complementary to that of K.J.Palmer([3]).展开更多
The cavity ring-down (CRD) technique is adopted for simultaneously measuring s- and p-polarization reflectivity of highly reflective coatings without employing any polarization optics. As the s- and p-polarized ligh...The cavity ring-down (CRD) technique is adopted for simultaneously measuring s- and p-polarization reflectivity of highly reflective coatings without employing any polarization optics. As the s- and p-polarized light trapped in the ring-down cavity decay independently, with a randomly polarized light source the ring-down signal recorded by a photodetector presents a double-exponential waveform consisting of ring-down signals of both s- and p-polarized light. The s- and p-polarization reflectivity values of a test mirror are therefore simultaneously determined by fitting the recorded ring-down signal with a double-exponential function. The determined s- and p-polarization reflectivity of 30° and 45° angle of incidence mirrors are in good agreement with the reflectivity values measured with the conventional CRD technique employing a polarizer for polarization control.展开更多
Instead of the usual Hirota ansatz,i.e.,the functions in bilinear equations being chosen as exponentialtypes,a generalized Hirota ansatz is proposed for a (3+1)-dimensional nonlinear evolution equation.Based on theres...Instead of the usual Hirota ansatz,i.e.,the functions in bilinear equations being chosen as exponentialtypes,a generalized Hirota ansatz is proposed for a (3+1)-dimensional nonlinear evolution equation.Based on theresulting generalized Hirota ansatz,a family of new explicit solutions for the equation are derived.展开更多
文摘Let Pi, 1≤i≤5, be prime numbers. It is proved that every integer N that satisfies N=5 (mod 24) can be written as N=p1^2+p2^2+P3^2+p4^2 +p5^2, where │√N5-Pi│≤N^1/2-19/850+∈.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12371087, 11971109,11971194, 11672074 and 12271185)supported by the program for Probability and Statistics:Theory and Application (Grant No. IRTL1704)+1 种基金the program for Innovative Research Team in Science and Technology in Fujian Province University (Grant No. IRTSTFJ)supported by Guangdong NSFC (Grant No. 2022A1515011124)
文摘Let An∈M2(ℤ)be integral matrices such that the infinite convolution of Dirac measures with equal weightsμ{A_(n),n≥1}δA_(1)^(-1)D*δA_(1)^(-1)A_(2)^(-2)D*…is a probability measure with compact support,where D={(0,0)^(t),(1,0)^(t),(0,1)^(t)}is the Sierpinski digit.We prove that there exists a setΛ⊂ℝ2 such that the family{e2πi〈λ,x〉:λ∈Λ} is an orthonormal basis of L^(2)(μ{A_(n),n≥1})if and only if 1/3(1,-1)A_(n)∈Z^(2)for n≥2 under some metric conditions on A_(n).
文摘The aim of this paper is to investigate the existence and uniqueness of almost periodic solutions for the forced Rayleigh equation. By combining the theory of exponential dichotomies with Liapunov functions, we obtain an interesting result on the existence of almost periodic solutions.
基金This project is partly supported by the Reidler Foundation
文摘We establish the exponential stability of fast traveling pulse solutions to nonlinear singularly per-turbed systems of integral differential equations arising from neuronal networks.It has been proved that expo-nential stability of these orbits is equivalent to linear stability.Let (?) be the linear differential operator obtainedby linearizing the nonlinear system about its fast pulse,and let σ((?)) be the spectrum of (?).The linearizedstability criterion says that if max{Reλ:λ∈σ((?)),λ≠0}(?)-D,for some positive constant D,and λ=0 is asimple eigenvalue of (?)(ε),then the stability follows immediately (see [13] and [37]).Therefore,to establish theexponential stability of the fast pulse,it suffices to investigate the spectrum of the operator (?).It is relativelyeasy to find the continuous spectrum,but it is very difficult to find the isolated spectrum.The real part ofthe continuous spectrum has a uniformly negative upper bound,hence it causes no threat to the stability.Itremains to see if the isolated spectrum is safe.Eigenvalue functions (see [14] and [35,36]) have been a powerful tool to study the isolated spectrum of the as-sociated linear differential operators because the zeros of the eigenvalue functions coincide with the eigenvaluesof the operators.There have been some known methods to define eigenvalue functions for nonlinear systems ofreaction diffusion equations and for nonlinear dispersive wave equations.But for integral differential equations,we have to use different ideas to construct eigenvalue functions.We will use the method of variation of param-eters to construct the eigenvalue functions in the complex plane C.By analyzing the eigenvalue functions,wefind that there are no nonzero eigenvalues of (?) in {λ∈C:Reλ(?)-D} for the fast traveling pulse.Moreoverλ=0 is simple.This implies that the exponential stability of the fast orbits is true.
基金supported through Project KK.01.1.1.02.0027a project co-financed by the Croatian Government and the European Union through the European Regional Development Fund-the Competitiveness and Cohesion Operational Programme.
文摘The purpose of this paper is to present the class of atomic basis functions(ABFs)which are of exponential type and are denoted by EFupn(x,ω).While ABFs of the algebraic type are already represented in the numerical modeling of various problems inmathematical physics and computationalmechanics,ABFs of the exponential type have not yet been sufficiently researched.These functions,unlike the ABFs of the algebraic type Fupn(x),contain the tension parameterω,which gives them additional approximation properties.Exponential monomials up to the nth degree can be described exactly by the linear combination of the functions EFupn(x,ω).The function EFupn for n=0 is called the“mother”ABF of the exponential type,i.e.,EFup0(x,ω)≡Eup(x,ω).In other words,the functions EFupn(x,ω)are elements of the linear vector space EUPn and retain all the properties of their“mother”function Eup(x,ω).Thus,this paper,in terms of its content and purpose,can be understood as a sequel of the article by Brajcic Kurbasa et al.,which shows the basic properties and application of the basis function Eup(x,ω).This paper presents,in an analogous way,the development and application of the exponential basis functions EFupn(x,ω).Here,for the first time,expressions for calculating the values of the functions EFupn(x,ω)and their derivatives are given in a form suitable for application in numerical analyses,which is shown in the verification examples of the approximations of known functions.
基金supported by Natural Science Foundation of China(11271289,11502141)the Fundamental Research Funds for the Central Universitiesthe Key Program of NSFC-Guangdong Joint Fund of China(U1135003)
基金partially supported by the National Natural Science of Foundation under Grant No.1900929。
文摘This is an expository paper on algebraic aspects of exponential sums over finite fields.This is a new direction.Various examples,results and open problems are presented along the way,with particular emphasis on Gauss periods,Kloosterman sums and one variable exponential sums.One main tool is the applications of various p-adic methods.For this reason,the author has also included a brief exposition of certain p-adic estimates of exponential sums.The material is based on the lectures given at the 2020 online number theory summer school held at Xiamen University.Notes were taken by Shaoshi Chen and Ruichen Xu.
文摘SINCE Olsen and Lempel constructed a family of optimal key sequences (called Bent se-quences) by using the trace function over finite field in 1982, the theory of trace functionhas been widely used in spread-spectrum communication and cryptology. Many papers aboutconstructing pseudorandom sequences by using trace functions were published in IEEE Trans-actions on Information Theory. The sequences (such as GMW sequences, No sequences,
文摘The fine-structure constant α [1] is a constant in physics that plays a fundamental role in the electromagnetic interaction. It is a dimensionless constant, defined as: (1) being q the elementary charge, ε0 the vacuum permittivity, h the Planck constant and c the speed of light in vacuum. The value shown in (1) is according CODATA 2014 [2]. In this paper, it will be explained that the fine-structure constant is one of the roots of the following equation: (2) being e the mathematical constant e (the base of the natural logarithm). One of the solutions of this equation is: (3) This means that it is equal to the CODATA value in nine decimal digits (or the seven most significant ones if you prefer). And therefore, the difference between both values is: (4) This coincidence is higher in orders of magnitude than the commonly accepted necessary to validate a theory towards experimentation. As the cosine function is periodical, the Equation (2) has infinite roots and could seem the coincidence is just by chance. But as it will be shown in the paper, the separation among the different solutions is sufficiently high to disregard this possibility. It will also be shown that another elegant way to show Equation (2) is the following (being i the imaginary unit): (5) having of course the same root (3). The possible meaning of this other representation (5) will be explained.
文摘In this paper we construct, by using the theory of exponential dichotomies, a Melnikov-type function by which we can detect the existence of homoclinic orbits for the perturbed systems x = g(x) + epsilon h(t, x, epsilon). Our result of this paper may be complementary to that of K.J.Palmer([3]).
文摘The cavity ring-down (CRD) technique is adopted for simultaneously measuring s- and p-polarization reflectivity of highly reflective coatings without employing any polarization optics. As the s- and p-polarized light trapped in the ring-down cavity decay independently, with a randomly polarized light source the ring-down signal recorded by a photodetector presents a double-exponential waveform consisting of ring-down signals of both s- and p-polarized light. The s- and p-polarization reflectivity values of a test mirror are therefore simultaneously determined by fitting the recorded ring-down signal with a double-exponential function. The determined s- and p-polarization reflectivity of 30° and 45° angle of incidence mirrors are in good agreement with the reflectivity values measured with the conventional CRD technique employing a polarizer for polarization control.
文摘Instead of the usual Hirota ansatz,i.e.,the functions in bilinear equations being chosen as exponentialtypes,a generalized Hirota ansatz is proposed for a (3+1)-dimensional nonlinear evolution equation.Based on theresulting generalized Hirota ansatz,a family of new explicit solutions for the equation are derived.