The environmental or anthropogenic factors, to which the in-service bridges are subjected,are responsible for the reduction of bridge performance, and finally lead to great service risk for bridges and increase the pr...The environmental or anthropogenic factors, to which the in-service bridges are subjected,are responsible for the reduction of bridge performance, and finally lead to great service risk for bridges and increase the probability of substantial economic losses. Probabilitybased estimate of bridge resistance is an essential indicator for the bridge condition evaluation and for optimization of bridge maintenance/repair decisions. It places an emphasis on the proper probabilistic models of structural properties and assessment methods. Making full use of historical service load information may improve the accuracy of bridge performance assessment with reduced epistemic uncertainty for existing aging bridges. In to-date analyses to update the bridge resistance with past service information,the models of resistance deterioration have been assumed as either deterministic or fully correlated, which may differ significantly from the realistic case. With this regard, this paper proposes a novel method for updating the resistance of service-proven bridges with a realistic deterioration model. The Gamma stochastic process has been suggested in the literature to describe the probabilistic behavior of structural time-dependent resistance and thus is adopted in this paper. An illustrative bridge is presented to demonstrate the applicability of the proposed method. Parametric examples are conducted to investigate the role of resistance deterioration model in the updated estimate of bridge resistance with historical service information.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 51578315, 51778337)the National Key Research and Development Program of China (Grant No. 2016YFC0701404)the Faculty of Engineering and IT PhD Research Scholarship (SC1911) from the University of Sydney
文摘The environmental or anthropogenic factors, to which the in-service bridges are subjected,are responsible for the reduction of bridge performance, and finally lead to great service risk for bridges and increase the probability of substantial economic losses. Probabilitybased estimate of bridge resistance is an essential indicator for the bridge condition evaluation and for optimization of bridge maintenance/repair decisions. It places an emphasis on the proper probabilistic models of structural properties and assessment methods. Making full use of historical service load information may improve the accuracy of bridge performance assessment with reduced epistemic uncertainty for existing aging bridges. In to-date analyses to update the bridge resistance with past service information,the models of resistance deterioration have been assumed as either deterministic or fully correlated, which may differ significantly from the realistic case. With this regard, this paper proposes a novel method for updating the resistance of service-proven bridges with a realistic deterioration model. The Gamma stochastic process has been suggested in the literature to describe the probabilistic behavior of structural time-dependent resistance and thus is adopted in this paper. An illustrative bridge is presented to demonstrate the applicability of the proposed method. Parametric examples are conducted to investigate the role of resistance deterioration model in the updated estimate of bridge resistance with historical service information.