This paper introduces the generalized excited pair coherent state (GEPCS). Using the entangled state 〈η〉 representation of Wigner operator, it obtains the Wigner function for the GEPCS. In the ρ-γ phase space, ...This paper introduces the generalized excited pair coherent state (GEPCS). Using the entangled state 〈η〉 representation of Wigner operator, it obtains the Wigner function for the GEPCS. In the ρ-γ phase space, the variations of the Wigner function distributions with the parameters q, α, k and l are discussed. The tomogram of the GEPCS is calculated with the help of the Radon transform between the Wigner operator and the projection operator of the entangled state |η1, η2, τ1, τ2|. The entangled states |η〉 and |η1, η2, τ1, τ2〉 provide two good representative space for studying the Wigner functions and tomograms of various two-mode correlated quantum states.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 10574060)the Natural Science Foundation of Shandong Province of China (Grant No Y2004A09)
文摘This paper introduces the generalized excited pair coherent state (GEPCS). Using the entangled state 〈η〉 representation of Wigner operator, it obtains the Wigner function for the GEPCS. In the ρ-γ phase space, the variations of the Wigner function distributions with the parameters q, α, k and l are discussed. The tomogram of the GEPCS is calculated with the help of the Radon transform between the Wigner operator and the projection operator of the entangled state |η1, η2, τ1, τ2|. The entangled states |η〉 and |η1, η2, τ1, τ2〉 provide two good representative space for studying the Wigner functions and tomograms of various two-mode correlated quantum states.