The NUBASE2020 evaluation contains the recommended values of the main nuclear physics properties for all nuclei in their ground and excited,isomeric(T1/2≥100 ns)states.It encompasses all experimental data published i...The NUBASE2020 evaluation contains the recommended values of the main nuclear physics properties for all nuclei in their ground and excited,isomeric(T1/2≥100 ns)states.It encompasses all experimental data published in primary(journal articles)and secondary(mainly laboratory reports and conference proceedings)references,together with the corresponding bibliographical information.In cases where no experimental data were available for a particular nuclide,trends in the behavior of specific properties in neighboring nuclei were examined and estimated values are proposed.Evaluation procedures and policies that were used during the development of this evaluated nuclear data library are presented,together with a detailed table of recommended values and their uncertainties.展开更多
The process of charge transfer based on triboelectrification (TE) and contact electrification (CE) has been recently utilized as the basis for a new and promising energy harvesting technology, i.e., triboelectric ...The process of charge transfer based on triboelectrification (TE) and contact electrification (CE) has been recently utilized as the basis for a new and promising energy harvesting technology, i.e., triboelectric nanogenerators, as well as self- powered sensors and systems. The electrostatic charge transfer between two surfaces can occur in both the TE and the CE modes depending on the involvement of relative sliding friction. Does the sliding behavior in TE induce any fundamental difference in the charge transfer from the CE? Few studies are available on this comparison because of the challenges in ruling out the effect of the contact area using traditional macro-scale characterization methods. This paper provides the first study on the fundamental differences in CE and TE at the nanoscale based on scanning probe microscopic methods. A quantitative comparison of the two processes at equivalent contact time and force is provided, and the results suggest that the charge transfer from TE is much faster than that from CE, but the saturation value of the transferred charge density is the same. The measured frictional energy dissipation of -11 eV when the tip scans over distance of I A sheds light on a potential mechanism: The friction may facilitate the charge transfer process via electronic excitation. These results provide fundamental guidance for the selection of materials and device structures to enable the TE or the CE in different applications; the CE mode is favorable for frequent moderate contact such as vibration energy harvesting and the TE mode is favorable for instant movement such as harvesting of energy from human walking.展开更多
Influence of high light stress on the photosynthesis of flag leaves of indica subspecies (cv. “Shanyou 63', sensitive to photoinhibition) and japonica subspecies (cv. “Wuyujing', resistant to photoin...Influence of high light stress on the photosynthesis of flag leaves of indica subspecies (cv. “Shanyou 63', sensitive to photoinhibition) and japonica subspecies (cv. “Wuyujing', resistant to photoinhibition) of rice ( Oryza sativa L.) was comparatively investigated. In both cultivars of rice, the excitation energy distribution between two photosystems was altered and the excitation energy transfer from light harvesting chlorophyll protein complexes to PSⅡ was inhibited by high light stress. These decreases were more pronounced in indica rice cultivar as compared to japonica one. The analysis of mild SDS_PAGE showed that in indica rice, high light stress almost disaggregated the trimer of light harvesting chlorophyll protein complexes of PSⅡ (LHC Ⅱ 1). The stress reduced the contents of internal antennae chlorophyll protein complexes of PSⅡ (CPa), light harvesting chlorophyll protein of PSⅠ (CPⅠa) and Chl a protein complex of PSⅠ reaction center (CPⅠ) as well as dimer of LHCⅡ (LHCⅡ 2) in indica rice. In japonica subspecies, however, high light stress depressed the contents of LHCⅡ 1, CPa and CPⅠa, but slightly impacted on CPⅠ content. Moreover, the increase in the contents of monomer of LHCⅡ by high light stress was found in both subspecies. In consistent with above results, analysis of polypeptide indicated that the amounts of 27 kD and 25 kD polypeptide of LHCⅡ in particular, as well as that of 21 kD polypeptide of CPⅠa were reduced by high light stress in both subspecies. It was found that, comparing with japonica rice, the stress pronouncedly diminished 43 kD and 47 kD proteins of CPa and 23 kD extrisic protein in indica rice.展开更多
A modified snap-through mechanism is used in an electromagnetic energy harvester to improve its effectiveness. It mainly comprises three springs that are configured so that the potential energy of the system has two s...A modified snap-through mechanism is used in an electromagnetic energy harvester to improve its effectiveness. It mainly comprises three springs that are configured so that the potential energy of the system has two stable equilibrium points. In particular, the small vibration behavior of the harvester around one of the equilibriums is of interest. A multi-scale method(MSM) is used to analyze the frequency response curve. Two snap-through mechanisms are considered. One has both horizontal and vertical springs. The other has only horizontal springs. The frequency response curves of these two classes are compared under the same excitation and electric loading conditions. The latter exhibits more bending of the frequency response curve than the former one. The results are also validated by some numerical work. The averaged power subject to the Gaussian white noise is calculated numerically, and the results demonstrate that bi-stable energy harvesting with only horizontal springs can outperform the mechanism with both horizontal and vertical springs for the same distance between two equilibriums.展开更多
基金This work was supported by the U.S.Department of Energy,Office of Science,Office of Nuclear Physics,under Contract No.DE-AC02-06CH11357(ANL)in part by the National Key Research and Development Program of China(Grant No.2016YFA0400504)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(CAS,Grant No.XDB34000000)(IMP)W.J.Huang acknowledges the financial support by the Max-Planck-Society.S.Naimi acknowledges the support of the RIKEN Pioneering Project Funding.
文摘The NUBASE2020 evaluation contains the recommended values of the main nuclear physics properties for all nuclei in their ground and excited,isomeric(T1/2≥100 ns)states.It encompasses all experimental data published in primary(journal articles)and secondary(mainly laboratory reports and conference proceedings)references,together with the corresponding bibliographical information.In cases where no experimental data were available for a particular nuclide,trends in the behavior of specific properties in neighboring nuclei were examined and estimated values are proposed.Evaluation procedures and policies that were used during the development of this evaluated nuclear data library are presented,together with a detailed table of recommended values and their uncertainties.
基金Research was supported by U.S. Department of Energy, Office of Basic Energy Sciences (No. DE-FG02- 07ER46394) and the National Science Foundation (No. DMR-1505319). We also would like to express our sincere appreciation to Dr. Ricardo Garcia for the insightful discussion on modeling and calculation of the dynamic motion of the cantilever in tapping mode AFM.
文摘The process of charge transfer based on triboelectrification (TE) and contact electrification (CE) has been recently utilized as the basis for a new and promising energy harvesting technology, i.e., triboelectric nanogenerators, as well as self- powered sensors and systems. The electrostatic charge transfer between two surfaces can occur in both the TE and the CE modes depending on the involvement of relative sliding friction. Does the sliding behavior in TE induce any fundamental difference in the charge transfer from the CE? Few studies are available on this comparison because of the challenges in ruling out the effect of the contact area using traditional macro-scale characterization methods. This paper provides the first study on the fundamental differences in CE and TE at the nanoscale based on scanning probe microscopic methods. A quantitative comparison of the two processes at equivalent contact time and force is provided, and the results suggest that the charge transfer from TE is much faster than that from CE, but the saturation value of the transferred charge density is the same. The measured frictional energy dissipation of -11 eV when the tip scans over distance of I A sheds light on a potential mechanism: The friction may facilitate the charge transfer process via electronic excitation. These results provide fundamental guidance for the selection of materials and device structures to enable the TE or the CE in different applications; the CE mode is favorable for frequent moderate contact such as vibration energy harvesting and the TE mode is favorable for instant movement such as harvesting of energy from human walking.
文摘Influence of high light stress on the photosynthesis of flag leaves of indica subspecies (cv. “Shanyou 63', sensitive to photoinhibition) and japonica subspecies (cv. “Wuyujing', resistant to photoinhibition) of rice ( Oryza sativa L.) was comparatively investigated. In both cultivars of rice, the excitation energy distribution between two photosystems was altered and the excitation energy transfer from light harvesting chlorophyll protein complexes to PSⅡ was inhibited by high light stress. These decreases were more pronounced in indica rice cultivar as compared to japonica one. The analysis of mild SDS_PAGE showed that in indica rice, high light stress almost disaggregated the trimer of light harvesting chlorophyll protein complexes of PSⅡ (LHC Ⅱ 1). The stress reduced the contents of internal antennae chlorophyll protein complexes of PSⅡ (CPa), light harvesting chlorophyll protein of PSⅠ (CPⅠa) and Chl a protein complex of PSⅠ reaction center (CPⅠ) as well as dimer of LHCⅡ (LHCⅡ 2) in indica rice. In japonica subspecies, however, high light stress depressed the contents of LHCⅡ 1, CPa and CPⅠa, but slightly impacted on CPⅠ content. Moreover, the increase in the contents of monomer of LHCⅡ by high light stress was found in both subspecies. In consistent with above results, analysis of polypeptide indicated that the amounts of 27 kD and 25 kD polypeptide of LHCⅡ in particular, as well as that of 21 kD polypeptide of CPⅠa were reduced by high light stress in both subspecies. It was found that, comparing with japonica rice, the stress pronouncedly diminished 43 kD and 47 kD proteins of CPa and 23 kD extrisic protein in indica rice.
基金Project supported by the State Key Program of National Natural Science of China(No.11232009)the National Natural Science Foundation of China(Nos.11502135 and 11572182)the Innovation Program of Shanghai Municipal Education Commission(No.2017-01-07-00-09-E00019)
文摘A modified snap-through mechanism is used in an electromagnetic energy harvester to improve its effectiveness. It mainly comprises three springs that are configured so that the potential energy of the system has two stable equilibrium points. In particular, the small vibration behavior of the harvester around one of the equilibriums is of interest. A multi-scale method(MSM) is used to analyze the frequency response curve. Two snap-through mechanisms are considered. One has both horizontal and vertical springs. The other has only horizontal springs. The frequency response curves of these two classes are compared under the same excitation and electric loading conditions. The latter exhibits more bending of the frequency response curve than the former one. The results are also validated by some numerical work. The averaged power subject to the Gaussian white noise is calculated numerically, and the results demonstrate that bi-stable energy harvesting with only horizontal springs can outperform the mechanism with both horizontal and vertical springs for the same distance between two equilibriums.