The effects of simulated nitrogen(N)deposition on soil exchangeable cations were studied in three forest types of subtropical China.Four N treatments with three replications were designed for the monsoon evergreen bro...The effects of simulated nitrogen(N)deposition on soil exchangeable cations were studied in three forest types of subtropical China.Four N treatments with three replications were designed for the monsoon evergreen broadleaf forest (mature forest):control(0 kg N ha-1 year-1),low N(50 kg N ha-1 year-1),medium N(100 kg N ha-1 year-1)and high N(150 kg N ha-1 year-1),and only three treatments(i.e.,control,low N,medium N)were established for the pine and mixed forests.Nitrogen had been applied continuously for 26 months before the measurement.The mature forest responded more rapidly and intensively to N additions than the pine and mixed forests,and exhibited some significant negative symptoms,e.g.,soil acidification,Al mobilization and leaching of base cations from soil.The pine and mixed forests responded slowly to N additions and exhibited no significant response of soil cations.Response of soil exchangeable cations to N deposition varied in the forests of subtropical China,depending on soil N status and land-use history.展开更多
This investigation was conducted by using alkaline slag and crop straw biochars to reduce acidity of an acidic Ultisol through incubation and pot experiments with lime as a comparison. The soil was amended with differ...This investigation was conducted by using alkaline slag and crop straw biochars to reduce acidity of an acidic Ultisol through incubation and pot experiments with lime as a comparison. The soil was amended with different liming materials: lime(1 g kg-1),alkaline slag(2 and 4 g kg-1), peanut straw biochar(10 and 20 g kg-1), canola straw biochar(10 and 20 g kg-1) and combinations of alkaline slag(2 g kg-1) and biochars(10 g kg-1) in the incubation study. A pot experiment was also conducted to observe the soybean growth responses to the above treatments. The results showed that all the liming materials increased soil p H and decreased soil exchangeable acidity. The higher the rates of alkaline slag, biochars, and alkaline slag combined with biochars, the greater the increase in soil p H and the reduction in soil exchangeable acidity. All the amendments increased the levels of one or more soil exchangeable base cations. The lime treatment increased soil exchangeable Ca2+, the alkaline slag treatment increased exchangeable Ca2+and Mg2+levels, and the biochars and combined applications of alkaline slag with biochars increased soil exchangeable Ca2+, Mg2+and K+and soil available P. The amendments enhanced the uptake of one or more nutrients of N, P, K, Ca and Mg by soybean in the pot experiment. Of the different amendments, the combined application of alkaline slag with crop straw biochars was the best choice for increasing base saturation and reducing soil acidity of the acidic Ultisol. The combined application of alkaline slag with biochars led to the greatest reduction in soil acidity, increased soil Ca, Mg, K and P levels, and enhanced the uptake of Ca, Mg, K and P by soybean plants.展开更多
基金Project supported by the National Natural Science Foundation of China(No.30670392)the Knowledge Innovation Program of the Chinese Academy of Sciences(Nos.KZCX2-YW-432 and KSCX2-SW-133)
文摘The effects of simulated nitrogen(N)deposition on soil exchangeable cations were studied in three forest types of subtropical China.Four N treatments with three replications were designed for the monsoon evergreen broadleaf forest (mature forest):control(0 kg N ha-1 year-1),low N(50 kg N ha-1 year-1),medium N(100 kg N ha-1 year-1)and high N(150 kg N ha-1 year-1),and only three treatments(i.e.,control,low N,medium N)were established for the pine and mixed forests.Nitrogen had been applied continuously for 26 months before the measurement.The mature forest responded more rapidly and intensively to N additions than the pine and mixed forests,and exhibited some significant negative symptoms,e.g.,soil acidification,Al mobilization and leaching of base cations from soil.The pine and mixed forests responded slowly to N additions and exhibited no significant response of soil cations.Response of soil exchangeable cations to N deposition varied in the forests of subtropical China,depending on soil N status and land-use history.
基金Supported by the National Basic Research Program(973 Program)of China(No.2014CB441003)the National Natural Science Foundation of China(No.41271010)
文摘This investigation was conducted by using alkaline slag and crop straw biochars to reduce acidity of an acidic Ultisol through incubation and pot experiments with lime as a comparison. The soil was amended with different liming materials: lime(1 g kg-1),alkaline slag(2 and 4 g kg-1), peanut straw biochar(10 and 20 g kg-1), canola straw biochar(10 and 20 g kg-1) and combinations of alkaline slag(2 g kg-1) and biochars(10 g kg-1) in the incubation study. A pot experiment was also conducted to observe the soybean growth responses to the above treatments. The results showed that all the liming materials increased soil p H and decreased soil exchangeable acidity. The higher the rates of alkaline slag, biochars, and alkaline slag combined with biochars, the greater the increase in soil p H and the reduction in soil exchangeable acidity. All the amendments increased the levels of one or more soil exchangeable base cations. The lime treatment increased soil exchangeable Ca2+, the alkaline slag treatment increased exchangeable Ca2+and Mg2+levels, and the biochars and combined applications of alkaline slag with biochars increased soil exchangeable Ca2+, Mg2+and K+and soil available P. The amendments enhanced the uptake of one or more nutrients of N, P, K, Ca and Mg by soybean in the pot experiment. Of the different amendments, the combined application of alkaline slag with crop straw biochars was the best choice for increasing base saturation and reducing soil acidity of the acidic Ultisol. The combined application of alkaline slag with biochars led to the greatest reduction in soil acidity, increased soil Ca, Mg, K and P levels, and enhanced the uptake of Ca, Mg, K and P by soybean plants.