The composition of the modern aerospace system becomes more and more complex.The performance degradation of any device in the system may cause it difficult for the whole system to keep normal working states.Therefore,...The composition of the modern aerospace system becomes more and more complex.The performance degradation of any device in the system may cause it difficult for the whole system to keep normal working states.Therefore,it is essential to evaluate the performance of complex aerospace systems.In this paper,the performance evaluation of complex aerospace systems is regarded as a Multi-Attribute Decision Analysis(MADA)problem.Based on the structure and working principle of the system,a new Evidential Reasoning(ER)based approach with uncertain parameters is proposed to construct a nonlinear optimization model to evaluate the system performance.In the model,the interval form is used to express the uncertainty,such as error in testing data and inaccuracy in expert knowledge.In order to analyze the subsystems that have a great impact on the performance of the system,the sensitivity analysis of the evaluation result is carried out,and the corresponding maintenance strategy is proposed.For a type of Inertial Measurement Unit(IMU)used in a rocket,the proposed method is employed to evaluate its performance.Then,the parameter sensitivity of the evaluation result is analyzed,and the main factors affecting the performance of IMU are obtained.Finally,the comparative study shows the effectiveness of the proposed method.展开更多
In this paper,a regression model is developed to estimate attribute reliability in the evidential reasoning(ER)context.By analysing the difference between attribute weight and attribute reliability,a general qualitati...In this paper,a regression model is developed to estimate attribute reliability in the evidential reasoning(ER)context.By analysing the difference between attribute weight and attribute reliability,a general qualitative definition of attribute reliability is provided.The reliability of an attribute is quantitatively measured in consistence with the qualitative definition in the context of the ER approach.A regression model is then constructed to generate attribute reliabilities by minimising the maximum differences between the real value of attribute reliability and its estimation.Within the post-optimal solution space of attribute reliabilities,an optimisation model is constructed to determine the expected utilities of each alternative in order to generate solutions to multiple attribute decision analysis problems.Asale place selection problem in Qingyang County of Chizhou in Anhui province of China is analysed using the proposed regression model to demonstrate its detailed implementation process,validity and applicability.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61773388,61751304,61833016,and 61702142)the Shaanxi Outstanding Youth Science Foundation(No.2020JC-34)the Key Research and Development Plan of Hainan(No.ZDYF2019007)。
文摘The composition of the modern aerospace system becomes more and more complex.The performance degradation of any device in the system may cause it difficult for the whole system to keep normal working states.Therefore,it is essential to evaluate the performance of complex aerospace systems.In this paper,the performance evaluation of complex aerospace systems is regarded as a Multi-Attribute Decision Analysis(MADA)problem.Based on the structure and working principle of the system,a new Evidential Reasoning(ER)based approach with uncertain parameters is proposed to construct a nonlinear optimization model to evaluate the system performance.In the model,the interval form is used to express the uncertainty,such as error in testing data and inaccuracy in expert knowledge.In order to analyze the subsystems that have a great impact on the performance of the system,the sensitivity analysis of the evaluation result is carried out,and the corresponding maintenance strategy is proposed.For a type of Inertial Measurement Unit(IMU)used in a rocket,the proposed method is employed to evaluate its performance.Then,the parameter sensitivity of the evaluation result is analyzed,and the main factors affecting the performance of IMU are obtained.Finally,the comparative study shows the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant Nos.71571060 and 71622003).
文摘In this paper,a regression model is developed to estimate attribute reliability in the evidential reasoning(ER)context.By analysing the difference between attribute weight and attribute reliability,a general qualitative definition of attribute reliability is provided.The reliability of an attribute is quantitatively measured in consistence with the qualitative definition in the context of the ER approach.A regression model is then constructed to generate attribute reliabilities by minimising the maximum differences between the real value of attribute reliability and its estimation.Within the post-optimal solution space of attribute reliabilities,an optimisation model is constructed to determine the expected utilities of each alternative in order to generate solutions to multiple attribute decision analysis problems.Asale place selection problem in Qingyang County of Chizhou in Anhui province of China is analysed using the proposed regression model to demonstrate its detailed implementation process,validity and applicability.