Networked control systems are spatially distributed systems in which the communication between sensors, actuators,and controllers occurs through a shared band-limited digital communication network. Several advantages ...Networked control systems are spatially distributed systems in which the communication between sensors, actuators,and controllers occurs through a shared band-limited digital communication network. Several advantages of the network architectures include reduced system wiring, plug and play devices,increased system agility, and ease of system diagnosis and maintenance. Consequently, networked control is the current trend for industrial automation and has ever-increasing applications in a wide range of areas, such as smart grids, manufacturing systems,process control, automobiles, automated highway systems, and unmanned aerial vehicles. The modelling, analysis, and control of networked control systems have received considerable attention in the last two decades. The ‘control over networks’ is one of the key research directions for networked control systems. This paper aims at presenting a survey of trends and techniques in networked control systems from the perspective of ‘control over networks’, providing a snapshot of five control issues: sampled-data control, quantization control, networked control, event-triggered control, and security control. Some challenging issues are suggested to direct the future research.展开更多
This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks(VANETs)subject to finite communication resource.First,a unified model is pr...This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks(VANETs)subject to finite communication resource.First,a unified model is presented to describe the coordinated platoon behavior of leader-follower vehicles in the simultaneous presence of unknown external disturbances and an unknown leader control input.Under such a platoon model,the central aim is to achieve robust platoon formation tracking with desired inter-vehicle spacing and same velocities and accelerations guided by the leader,while attaining improved communication efficiency.Toward this aim,a novel bandwidth-aware dynamic event-triggered scheduling mechanism is developed.One salient feature of the scheduling mechanism is that the threshold parameter in the triggering law is dynamically adjusted over time based on both vehicular state variations and bandwidth status.Then,a sufficient condition for platoon control system stability and performance analysis as well as a co-design criterion of the admissible event-triggered platooning control law and the desired scheduling mechanism are derived.Finally,simulation results are provided to substantiate the effectiveness and merits of the proposed co-design approach for guaranteeing a trade-off between robust platooning control performance and communication efficiency.展开更多
The paper proposes a Virtual Target Guidance(VTG)-based distributed Model Predictive Control(MPC) scheme for formation control of multiple Unmanned Aerial Vehicles(UAVs).First, a framework of distributed MPC scheme is...The paper proposes a Virtual Target Guidance(VTG)-based distributed Model Predictive Control(MPC) scheme for formation control of multiple Unmanned Aerial Vehicles(UAVs).First, a framework of distributed MPC scheme is designed in which each UAV only shares the information with its neighbors, and the obtained local Finite-Horizon Optimal Control Problem(FHOCP) can be solved by swarm intelligent optimization algorithm.Then, a VTG approach is developed and integrated into the distributed MPC scheme to achieve trajectory tracking and obstacle avoidance.Further, an event-triggered mechanism is proposed to reduce the computational burden for UAV formation control, which takes into consideration the predictive state errors as well as the convergence of cost function.Numerical simulations show that the proposed VTG-based distributed MPC scheme is more computationally efficient to achieve formation control of multiple UAVs in comparison with the traditional distributed MPC method.展开更多
The paper proposes a novel approach for formationcontainment control based on a dynamic event-triggering mechanism for multi-agent systems.The leader-leader and follower-follower communications are reduced by utilizin...The paper proposes a novel approach for formationcontainment control based on a dynamic event-triggering mechanism for multi-agent systems.The leader-leader and follower-follower communications are reduced by utilizing the distributed dynamic event-triggered framework.We consider two separate sets of design parameters:one set comprising control and dynamic event-triggering parameters for the leaders and a second set similar to the first one with different values for the followers.The proposed algorithm includes two novel stages of codesign optimization to simultaneously compute the two sets of parameters.The design optimizations are convex and use the weighted sum approach to enable a structured trade-off between the formation-containment convergence rate and associated communications.Simulations based on non-holonomic mobile robot multi-agent systems quantify the effectiveness of the proposed approach.展开更多
The paper develops a novel framework of consensus control with fault-estimation-in-the-loop for multi-agent systems(MASs)in the presence of faults.A dynamic event-triggered protocol(DETP)by adding an auxiliary variabl...The paper develops a novel framework of consensus control with fault-estimation-in-the-loop for multi-agent systems(MASs)in the presence of faults.A dynamic event-triggered protocol(DETP)by adding an auxiliary variable is utilized to improve the utilization of communication resources.First,a novel estimator with a noise bias is put forward to estimate the existed fault and then a consensus controller with fault compensation(FC)is adopted to realize the demand of reliability and safety of addressed MASs.Subsequently,a novel consensus control framework with fault-estimation-in-the-loop is developed to achieve the predetermined consensus performance with the l_(2)-l_(∞)constraint by employing the variance analysis and the Lyapunov stability approaches.Furthermore,the desired estimator and controller gains are obtained in light of the solution to an algebraic matrix equation and a linear matrix inequality in a recursive way,respectively.Finally,a simulation result is employed to verify the usefulness of the proposed design framework.展开更多
This paper investigates the average-consensus problem of multi-agent systems with direct and weighted topologies. Event-triggered control laws are adopted so as to reduce the frequency of individual control updating s...This paper investigates the average-consensus problem of multi-agent systems with direct and weighted topologies. Event-triggered control laws are adopted so as to reduce the frequency of individual control updating since the agents may be resource-limited in many real systems. The discrete time instants where the events are triggered are determined by a trigger function with respect to a certain measurement error. A centralized average-consensus protocol is proposed first for networks with fixed interaction topology, the stability and influencing factors of which are also analyzed. The design of trigger functions for networks with variable topology is also discussed. Then the results are extended to the decentralized counterpart, in which agents require only the information of their neighbors. Numerical examples are also provided that demonstrate the effectiveness of the theoretical results.展开更多
The paper proposes a new swarm intelligence-based distributed Model Predictive Control(MPC)approach for coordination control of multiple Unmanned Aerial Vehicles(UAVs).First,a distributed MPC framework is designed and...The paper proposes a new swarm intelligence-based distributed Model Predictive Control(MPC)approach for coordination control of multiple Unmanned Aerial Vehicles(UAVs).First,a distributed MPC framework is designed and each member only shares the information with neighbors.The Chaotic Grey Wolf Optimization(CGWO)method is developed on the basis of chaotic initialization and chaotic search to solve the local Finite Horizon Optimal Control Problem(FHOCP).Then,the distributed cost function is designed and integrated into each FHOCP to achieve multi-UAV formation control and trajectory tracking with no-fly zone constraint.Further,an event-triggered strategy is proposed to reduce the computational burden for the distributed MPC approach,which considers the predicted state errors and the convergence of cost function.Simulation results show that the CGWO-based distributed MPC approach is more computationally efficient to achieve multi-UAV coordination control than traditional method.展开更多
This paper investigates the differentially private problem of the average consensus for a class of discrete-time multi-agent network systems(MANSs). Based on the MANSs,a new distributed differentially private consensu...This paper investigates the differentially private problem of the average consensus for a class of discrete-time multi-agent network systems(MANSs). Based on the MANSs,a new distributed differentially private consensus algorithm(DPCA) is developed. To avoid continuous communication between neighboring agents, a kind of intermittent communication strategy depending on an event-triggered function is established in our DPCA. Based on our algorithm, we carry out the detailed analysis including its convergence, its accuracy, its privacy and the trade-off between the accuracy and the privacy level, respectively. It is found that our algorithm preserves the privacy of initial states of all agents in the whole process of consensus computation. The trade-off motivates us to find the best achievable accuracy of our algorithm under the free parameters and the fixed privacy level. Finally, numerical experiment results testify the validity of our theoretical analysis.展开更多
The efficient utilization of computation and communication resources became a critical design issue in a wide range of networked systems due to the finite computation and processing capabilities of system components(e...The efficient utilization of computation and communication resources became a critical design issue in a wide range of networked systems due to the finite computation and processing capabilities of system components(e.g., sensor, controller) and shared network bandwidth. Event-triggered mechanisms(ETMs) are regarded as a major paradigm shift in resource-constrained applications compared to the classical time-triggered mechanisms, which allows a trade-off to be achieved between desired control/estimation performance and improved resource efficiency. In recent years, dynamic event-triggered mechanisms(DETMs) are emerging as a promising enabler to fulfill more resource-efficient and flexible design requirements. This paper provides a comprehensive review of the latest developments in dynamic event-triggered control and estimation for networked systems. Firstly, a unified event-triggered control and estimation framework is established, which empowers several fundamental issues associated with the construction and implementation of the desired ETM and controller/estimator to be systematically investigated. Secondly, the motivations of DETMs and their main features and benefits are outlined. Then, two typical classes of DETMs based on auxiliary dynamic variables(ADVs) and dynamic threshold parameters(DTPs) are elaborated. In addition, the main techniques of constructing ADVs and DTPs are classified, and their corresponding analysis and design methods are discussed. Furthermore, three application examples are provided to evaluate different ETMs and verify how and under what conditions DETMs are superior to their static and periodic counterparts. Finally, several challenging issues are envisioned to direct the future research.展开更多
In recent years, theoretical and practical research on event-based communication strategies has gained considerable research attention due primarily to their irreplaceable superiority in resource-constrained systems(...In recent years, theoretical and practical research on event-based communication strategies has gained considerable research attention due primarily to their irreplaceable superiority in resource-constrained systems(especially networked systems). For networked systems, event-based transmission scheme is capable of improving the efficiency in resource utilization and prolonging the lifetime of the network components compared with the widely adopted periodic transmission scheme. As such, it would be interesting to 1) examining how the event-triggering mechanisms affect the control or filtering performance for networked systems, and 2) developing some suitable approaches for the controller and filter design problems. In this paper, a bibliographical review is presented on event-based control and filtering problems for various networked systems. First, the event-driven communication scheme is introduced in detail according to its engineering background, characteristic, and representative research frameworks. Then, different event-based control and filtering(or state estimation) problems are categorized and then discussed. Finally, we conclude the paper by outlining future research challenges for event-based networked systems.展开更多
Distributed consensus problems for multiple Euler-Lagrange systems are addressed on the basis of event-triggered information in this study. Distributed consensus protocols are first designed in terms of two event-trig...Distributed consensus problems for multiple Euler-Lagrange systems are addressed on the basis of event-triggered information in this study. Distributed consensus protocols are first designed in terms of two event-triggered scenarios: a decentralized strategy and a distributed strategy. Sufficient conditions that guarantee the event-triggered consensus for multiple Euler-Lagrange systems are then presented, with the associated advantages of reducing controller update times. It is shown that the Zeno behavior of triggering time sequences is excluded for both strategies. Finally, multiple Euler-Lagrange systems that consist of six two-link manipulators are considered to illustrate the effectiveness of the proposed theoretical algorithms.展开更多
The present paper deals with data-driven event-triggered control of a class of unknown discrete-time interconnected systems(a.k.a.network systems).To this end,we start by putting forth a novel distributed event-trigge...The present paper deals with data-driven event-triggered control of a class of unknown discrete-time interconnected systems(a.k.a.network systems).To this end,we start by putting forth a novel distributed event-triggering transmission strategy based on periodic sampling,under which a model-based stability criterion for the closed-loop network system is derived,by leveraging a discrete-time looped-functional approach.Marrying the model-based criterion with a data-driven system representation recently developed in the literature,a purely data-driven stability criterion expressed in the form of linear matrix inequalities(LMIs)is established.Meanwhile,the data-driven stability criterion suggests a means for co-designing the event-triggering coefficient matrix and the feedback control gain matrix using only some offline collected state-input data.Finally,numerical results corroborate the efficacy of the proposed distributed data-driven event-triggered network system(ETS)in cutting off data transmissions and the co-design procedure.展开更多
In this paper, the leader-following consensus for discrete-time nmlti-agent systems with parameter uncertainties is investigated based on the event-triggered strategy. And the parameter un- certainty is assmned to be ...In this paper, the leader-following consensus for discrete-time nmlti-agent systems with parameter uncertainties is investigated based on the event-triggered strategy. And the parameter un- certainty is assmned to be norm-bounded. A consensus protocol is designed based on the event-triggered strategy to make the multi-agent systems achieve consensus without continuous communication among agents. Each agent only needs to observe its own state to determine its own triggering instants under the triggering function in this paper. In addition, a sufficient condition for the existence of the event- triggered consensus protocol is derived and presented in terms of the linear matrix inequality. Finally, a numerical example is given to illustrate to efficiency of the event-triggered consensus protocol proposed in this paper.展开更多
基金supported in part by the Australian Research Council Discovery Project(DP160103567)
文摘Networked control systems are spatially distributed systems in which the communication between sensors, actuators,and controllers occurs through a shared band-limited digital communication network. Several advantages of the network architectures include reduced system wiring, plug and play devices,increased system agility, and ease of system diagnosis and maintenance. Consequently, networked control is the current trend for industrial automation and has ever-increasing applications in a wide range of areas, such as smart grids, manufacturing systems,process control, automobiles, automated highway systems, and unmanned aerial vehicles. The modelling, analysis, and control of networked control systems have received considerable attention in the last two decades. The ‘control over networks’ is one of the key research directions for networked control systems. This paper aims at presenting a survey of trends and techniques in networked control systems from the perspective of ‘control over networks’, providing a snapshot of five control issues: sampled-data control, quantization control, networked control, event-triggered control, and security control. Some challenging issues are suggested to direct the future research.
基金This work was supported in part by the Australian Research Council Discovery Early Career Researcher Award under Grant DE200101128.
文摘This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks(VANETs)subject to finite communication resource.First,a unified model is presented to describe the coordinated platoon behavior of leader-follower vehicles in the simultaneous presence of unknown external disturbances and an unknown leader control input.Under such a platoon model,the central aim is to achieve robust platoon formation tracking with desired inter-vehicle spacing and same velocities and accelerations guided by the leader,while attaining improved communication efficiency.Toward this aim,a novel bandwidth-aware dynamic event-triggered scheduling mechanism is developed.One salient feature of the scheduling mechanism is that the threshold parameter in the triggering law is dynamically adjusted over time based on both vehicular state variations and bandwidth status.Then,a sufficient condition for platoon control system stability and performance analysis as well as a co-design criterion of the admissible event-triggered platooning control law and the desired scheduling mechanism are derived.Finally,simulation results are provided to substantiate the effectiveness and merits of the proposed co-design approach for guaranteeing a trade-off between robust platooning control performance and communication efficiency.
基金supported in part by the National Natural Science Foundation of China(No.61803009)Fundamental Research Funds for the Central Universities,China(No.YWF-19-BJ-J-205)Aeronautical Science Foundation of China(No.20175851032)。
文摘The paper proposes a Virtual Target Guidance(VTG)-based distributed Model Predictive Control(MPC) scheme for formation control of multiple Unmanned Aerial Vehicles(UAVs).First, a framework of distributed MPC scheme is designed in which each UAV only shares the information with its neighbors, and the obtained local Finite-Horizon Optimal Control Problem(FHOCP) can be solved by swarm intelligent optimization algorithm.Then, a VTG approach is developed and integrated into the distributed MPC scheme to achieve trajectory tracking and obstacle avoidance.Further, an event-triggered mechanism is proposed to reduce the computational burden for UAV formation control, which takes into consideration the predictive state errors as well as the convergence of cost function.Numerical simulations show that the proposed VTG-based distributed MPC scheme is more computationally efficient to achieve formation control of multiple UAVs in comparison with the traditional distributed MPC method.
基金partially supported by the Natural Sciencesand Engineering Research Council(NSERC)of Canada through the NSERC Discovery(RGPIN-2016-04988)。
文摘The paper proposes a novel approach for formationcontainment control based on a dynamic event-triggering mechanism for multi-agent systems.The leader-leader and follower-follower communications are reduced by utilizing the distributed dynamic event-triggered framework.We consider two separate sets of design parameters:one set comprising control and dynamic event-triggering parameters for the leaders and a second set similar to the first one with different values for the followers.The proposed algorithm includes two novel stages of codesign optimization to simultaneously compute the two sets of parameters.The design optimizations are convex and use the weighted sum approach to enable a structured trade-off between the formation-containment convergence rate and associated communications.Simulations based on non-holonomic mobile robot multi-agent systems quantify the effectiveness of the proposed approach.
基金supported in part by the Australian Research Council Discovery Early Career Researcher Award(DE200101128)。
文摘The paper develops a novel framework of consensus control with fault-estimation-in-the-loop for multi-agent systems(MASs)in the presence of faults.A dynamic event-triggered protocol(DETP)by adding an auxiliary variable is utilized to improve the utilization of communication resources.First,a novel estimator with a noise bias is put forward to estimate the existed fault and then a consensus controller with fault compensation(FC)is adopted to realize the demand of reliability and safety of addressed MASs.Subsequently,a novel consensus control framework with fault-estimation-in-the-loop is developed to achieve the predetermined consensus performance with the l_(2)-l_(∞)constraint by employing the variance analysis and the Lyapunov stability approaches.Furthermore,the desired estimator and controller gains are obtained in light of the solution to an algebraic matrix equation and a linear matrix inequality in a recursive way,respectively.Finally,a simulation result is employed to verify the usefulness of the proposed design framework.
基金supported by the National Natural Science Foundation of China under Grant No.60904064, 61174094the Program for New Century Excellent Talents in University of China(NCET-10-0506)the Tianjin Natural Science Foundation of China under Grant No.09JCYBJC01700
文摘This paper investigates the average-consensus problem of multi-agent systems with direct and weighted topologies. Event-triggered control laws are adopted so as to reduce the frequency of individual control updating since the agents may be resource-limited in many real systems. The discrete time instants where the events are triggered are determined by a trigger function with respect to a certain measurement error. A centralized average-consensus protocol is proposed first for networks with fixed interaction topology, the stability and influencing factors of which are also analyzed. The design of trigger functions for networks with variable topology is also discussed. Then the results are extended to the decentralized counterpart, in which agents require only the information of their neighbors. Numerical examples are also provided that demonstrate the effectiveness of the theoretical results.
基金co-supported by the National Natural Science Foundation of China(Nos.61803009,61903084)Fundamental Research Funds for the Central Universities of China(No.YWF-20-BJ-J-542)Aeronautical Science Foundation of China(No.20175851032)。
文摘The paper proposes a new swarm intelligence-based distributed Model Predictive Control(MPC)approach for coordination control of multiple Unmanned Aerial Vehicles(UAVs).First,a distributed MPC framework is designed and each member only shares the information with neighbors.The Chaotic Grey Wolf Optimization(CGWO)method is developed on the basis of chaotic initialization and chaotic search to solve the local Finite Horizon Optimal Control Problem(FHOCP).Then,the distributed cost function is designed and integrated into each FHOCP to achieve multi-UAV formation control and trajectory tracking with no-fly zone constraint.Further,an event-triggered strategy is proposed to reduce the computational burden for the distributed MPC approach,which considers the predicted state errors and the convergence of cost function.Simulation results show that the CGWO-based distributed MPC approach is more computationally efficient to achieve multi-UAV coordination control than traditional method.
基金supported in part by the National Key Research and Development Program of China (2016YFB0800601)
文摘This paper investigates the differentially private problem of the average consensus for a class of discrete-time multi-agent network systems(MANSs). Based on the MANSs,a new distributed differentially private consensus algorithm(DPCA) is developed. To avoid continuous communication between neighboring agents, a kind of intermittent communication strategy depending on an event-triggered function is established in our DPCA. Based on our algorithm, we carry out the detailed analysis including its convergence, its accuracy, its privacy and the trade-off between the accuracy and the privacy level, respectively. It is found that our algorithm preserves the privacy of initial states of all agents in the whole process of consensus computation. The trade-off motivates us to find the best achievable accuracy of our algorithm under the free parameters and the fixed privacy level. Finally, numerical experiment results testify the validity of our theoretical analysis.
基金supported by the Australian Research Council Discovery Early Career Researcher Award(No.DE200101128).
文摘The efficient utilization of computation and communication resources became a critical design issue in a wide range of networked systems due to the finite computation and processing capabilities of system components(e.g., sensor, controller) and shared network bandwidth. Event-triggered mechanisms(ETMs) are regarded as a major paradigm shift in resource-constrained applications compared to the classical time-triggered mechanisms, which allows a trade-off to be achieved between desired control/estimation performance and improved resource efficiency. In recent years, dynamic event-triggered mechanisms(DETMs) are emerging as a promising enabler to fulfill more resource-efficient and flexible design requirements. This paper provides a comprehensive review of the latest developments in dynamic event-triggered control and estimation for networked systems. Firstly, a unified event-triggered control and estimation framework is established, which empowers several fundamental issues associated with the construction and implementation of the desired ETM and controller/estimator to be systematically investigated. Secondly, the motivations of DETMs and their main features and benefits are outlined. Then, two typical classes of DETMs based on auxiliary dynamic variables(ADVs) and dynamic threshold parameters(DTPs) are elaborated. In addition, the main techniques of constructing ADVs and DTPs are classified, and their corresponding analysis and design methods are discussed. Furthermore, three application examples are provided to evaluate different ETMs and verify how and under what conditions DETMs are superior to their static and periodic counterparts. Finally, several challenging issues are envisioned to direct the future research.
基金supported by National Natural Science Foundation of China(No.61329301)the Royal Society of the UK+2 种基金the Research Fund for the Taishan Scholar Project of Shandong Province of Chinathe China Postdoctoral Science Foundation(No.2016M600547)the Alexander von Humboldt Foundation of Germany
文摘In recent years, theoretical and practical research on event-based communication strategies has gained considerable research attention due primarily to their irreplaceable superiority in resource-constrained systems(especially networked systems). For networked systems, event-based transmission scheme is capable of improving the efficiency in resource utilization and prolonging the lifetime of the network components compared with the widely adopted periodic transmission scheme. As such, it would be interesting to 1) examining how the event-triggering mechanisms affect the control or filtering performance for networked systems, and 2) developing some suitable approaches for the controller and filter design problems. In this paper, a bibliographical review is presented on event-based control and filtering problems for various networked systems. First, the event-driven communication scheme is introduced in detail according to its engineering background, characteristic, and representative research frameworks. Then, different event-based control and filtering(or state estimation) problems are categorized and then discussed. Finally, we conclude the paper by outlining future research challenges for event-based networked systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.61225013&11332001)
文摘Distributed consensus problems for multiple Euler-Lagrange systems are addressed on the basis of event-triggered information in this study. Distributed consensus protocols are first designed in terms of two event-triggered scenarios: a decentralized strategy and a distributed strategy. Sufficient conditions that guarantee the event-triggered consensus for multiple Euler-Lagrange systems are then presented, with the associated advantages of reducing controller update times. It is shown that the Zeno behavior of triggering time sequences is excluded for both strategies. Finally, multiple Euler-Lagrange systems that consist of six two-link manipulators are considered to illustrate the effectiveness of the proposed theoretical algorithms.
基金supported in part by the National Key Research and Development Program of China(2021YFB1714800)the National Natural Science Foundation of China(62088101,61925303,62173034,U20B2073)+1 种基金the Natural Science Foundation of Chongqing(2021ZX4100027)the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under Germanys Excellence Strategy—EXC 2075-390740016(468094890)。
文摘The present paper deals with data-driven event-triggered control of a class of unknown discrete-time interconnected systems(a.k.a.network systems).To this end,we start by putting forth a novel distributed event-triggering transmission strategy based on periodic sampling,under which a model-based stability criterion for the closed-loop network system is derived,by leveraging a discrete-time looped-functional approach.Marrying the model-based criterion with a data-driven system representation recently developed in the literature,a purely data-driven stability criterion expressed in the form of linear matrix inequalities(LMIs)is established.Meanwhile,the data-driven stability criterion suggests a means for co-designing the event-triggering coefficient matrix and the feedback control gain matrix using only some offline collected state-input data.Finally,numerical results corroborate the efficacy of the proposed distributed data-driven event-triggered network system(ETS)in cutting off data transmissions and the co-design procedure.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.61104097,61321002,61120106010,61522303,U1509215Program for Changjiang Scholars and Innovative Research Team in University(IRT1208)+2 种基金ChangJiang Scholars Program,Beijing Outstanding Ph.D.Program Mentor Grant(20131000704)Program for New Century Excellent Talents in University(NCET-13-0045)Beijing Higher Education Young Elite Teacher Project
文摘In this paper, the leader-following consensus for discrete-time nmlti-agent systems with parameter uncertainties is investigated based on the event-triggered strategy. And the parameter un- certainty is assmned to be norm-bounded. A consensus protocol is designed based on the event-triggered strategy to make the multi-agent systems achieve consensus without continuous communication among agents. Each agent only needs to observe its own state to determine its own triggering instants under the triggering function in this paper. In addition, a sufficient condition for the existence of the event- triggered consensus protocol is derived and presented in terms of the linear matrix inequality. Finally, a numerical example is given to illustrate to efficiency of the event-triggered consensus protocol proposed in this paper.