期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于对比图学习的跨文档虚假信息检测
1
作者 廖劲智 赵和伟 +3 位作者 连小童 纪文亮 石海明 赵翔 《计算机科学》 CSCD 北大核心 2024年第3期14-19,共6页
当前,网络上充斥着大量虚假信息,严重阻碍了社会各行业的正常运转,如何精准检测虚假信息成为了亟待解决的问题。现有研究主要从账户特征、文本内容和多模态3个角度开展工作,但大多忽视了虚假信息赖以传播的关键特征(即内容新奇性),仅是... 当前,网络上充斥着大量虚假信息,严重阻碍了社会各行业的正常运转,如何精准检测虚假信息成为了亟待解决的问题。现有研究主要从账户特征、文本内容和多模态3个角度开展工作,但大多忽视了虚假信息赖以传播的关键特征(即内容新奇性),仅是孤立地分析判别目标信息的真实性,未能把握舆论环境的特征。因此,提出了一种基于对比图学习的跨文档虚假信息检测方法(Contrastive Graph Learning,CAL),聚焦于内容新奇性,主要包含两个关键模块:对比学习模块和异构图模块。前者致力于扩大客观事实与虚假信息在向量空间中的表示差异性;后者包含实体、事件、事件集、句子和文档5种类型实体,尽可能向实体表示中注入舆论环境的语义特征。最后,在IED,TL17和Crisis这3个数据集上,在文档级和事件级这两个层次上开展了相关实验,CAL在所有测试中均取得了最优的结果,验证了所提方法的有效性。 展开更多
关键词 跨文档虚假信息检测 对比学习 异构图 事件级检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部