期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种基于词和事件主题的卷积网络的新闻文本分类方法
被引量:
3
1
作者
于游
付钰
吴晓平
《计算机应用与软件》
北大核心
2021年第5期170-174,240,共6页
针对传统文本分类过程中词表示特征时不够全面、可解释性差的问题,提出一种基于词和事件主题的W-E CNN文本分类方法,并给出基于BTM的事件主题模型。将传统基于词的特征表示方法与事件主题特征表示方法进行拼接作为CNN的输入,丰富特征语...
针对传统文本分类过程中词表示特征时不够全面、可解释性差的问题,提出一种基于词和事件主题的W-E CNN文本分类方法,并给出基于BTM的事件主题模型。将传统基于词的特征表示方法与事件主题特征表示方法进行拼接作为CNN的输入,丰富特征语义信息,提高了文本分类的准确性。实验分析可知,该方法的分类准确性在一定程度上要优于其他方法。
展开更多
关键词
文本分类
事件主题模型
BTM
CNN
下载PDF
职称材料
题名
一种基于词和事件主题的卷积网络的新闻文本分类方法
被引量:
3
1
作者
于游
付钰
吴晓平
机构
海军工程大学信息安全系
出处
《计算机应用与软件》
北大核心
2021年第5期170-174,240,共6页
基金
国家自然科学基金项目(61672531)。
文摘
针对传统文本分类过程中词表示特征时不够全面、可解释性差的问题,提出一种基于词和事件主题的W-E CNN文本分类方法,并给出基于BTM的事件主题模型。将传统基于词的特征表示方法与事件主题特征表示方法进行拼接作为CNN的输入,丰富特征语义信息,提高了文本分类的准确性。实验分析可知,该方法的分类准确性在一定程度上要优于其他方法。
关键词
文本分类
事件主题模型
BTM
CNN
Keywords
Text
classification
event
topic
model
BTM
CNN
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种基于词和事件主题的卷积网络的新闻文本分类方法
于游
付钰
吴晓平
《计算机应用与软件》
北大核心
2021
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部