Measurement of 228Ra activities in the upper 300 m water column was conducted at two stations in the South China Sea using an MnO2-fiber extraction/β-counting technique of 228Ac. Results showed that 228Ra activities ...Measurement of 228Ra activities in the upper 300 m water column was conducted at two stations in the South China Sea using an MnO2-fiber extraction/β-counting technique of 228Ac. Results showed that 228Ra activities ranged from 0.38 to 3.60 Bq·m-3. The vertical profiles of 228Ra at the time-series station favored a steady state assumption. Based on a one-dimensional steady state model, 228Ra-nitrate coupled approach was applied to stations NS97-43, NS99-53 (T1), NS99-53 (T2). New production thus quantified were 4.4, 5.1 and 5.7 mmolC·m-2·d-1, respectively. f ratios in the South China Sea were estimated from the derived new production and the documented primary productivity in the regime, to be 0.12-0.15.展开更多
A nutrient-phytoplankton-zooplankton-detritus (NPZD) type of marine ecosystem model was developed in this study,and was further coupled to a three-dimensional primitive-equation ocean circulation model with a river ...A nutrient-phytoplankton-zooplankton-detritus (NPZD) type of marine ecosystem model was developed in this study,and was further coupled to a three-dimensional primitive-equation ocean circulation model with a river discharge model and a solar radiation model to reproduce the dynamics of the low nutrition level in the Bohai Sea (BS).The simulation results were validated by observations and it was shown that the seasonal variation in the phytoplankton biomass could be characterized by the double-peak structure,corresponding to the spring and summer blooms,respectively.It was also found that both nitrogen and phosphate declined to the lowest level after the onset of the summer bloom,since the large amounts of nutrients were exhausted by phytoplankton for photosynthesis,and the concentrations of nutrients could resume in winter after a series of the biogeochemical-physical processes.By calculating the nitrogen/phosphorus (N/P) ratio,it is easy to see that the phytoplankton dynamics is nitrogen-limited as a whole in BS,though the phosphorus limitation may occur in the Yellow River (YR) Estuary where the input of riverine nitrogen is much more than that of phosphate.展开更多
真光层深度Zeu(Euphotic Zone Depth)是指光合有效辐照度衰减为水体表面处1%时所对应的深度。它是描述水质特性的重要参数,对浮游植物光合作用,全球碳循环以及海洋环境变化的研究具有重要意义。本文基于多年在渤黄海现场实测数据,建立...真光层深度Zeu(Euphotic Zone Depth)是指光合有效辐照度衰减为水体表面处1%时所对应的深度。它是描述水质特性的重要参数,对浮游植物光合作用,全球碳循环以及海洋环境变化的研究具有重要意义。本文基于多年在渤黄海现场实测数据,建立了针对MODIS(Moderate Resolution Imaging Spectroradiometer)传感器的Zeu遥感估算模型,该模型表现出良好的估算精度。在此基础上,利用2002年—2020年MODIS长时序卫星遥感数据,研究揭示了渤黄海Zeu的时空变化规律,结果显示,渤黄海Zeu具有近岸低、外海高的特点,并且明显表现出夏深冬浅的季节变化特征;长江口北舌状低值区夏季时往东北方向伸展,而在秋初时转向东南;在2002—2020年间,渤海、北黄海以及苏北浅滩的Zeu单调变化,而南黄海、济州岛南及长江口北的Zeu呈现波动式的变化趋势。此外,本文结合多源卫星遥感数据资料分析了Zeu时空变化的驱动因素,结果显示,在渤海、南黄海、北黄海及苏北浅滩,Zeu的时空变异受多种驱动因素的综合影响,其中海表面温度和光合有效辐射对Zeu的变化呈正向驱动,而风速和总悬浮颗粒物浓度呈负向驱动;此外,长江径流量对长江口北Zeu的变化也起着负向驱动作用,两者之间呈现强负相关关系(相关系数R=-0.55)。展开更多
基金This work was supported by Chinese National Research Program of Science and Technology (Grant No. 97-926-04-02) the National Natural Science Foundation of China (Grant No. 49676296).
文摘Measurement of 228Ra activities in the upper 300 m water column was conducted at two stations in the South China Sea using an MnO2-fiber extraction/β-counting technique of 228Ac. Results showed that 228Ra activities ranged from 0.38 to 3.60 Bq·m-3. The vertical profiles of 228Ra at the time-series station favored a steady state assumption. Based on a one-dimensional steady state model, 228Ra-nitrate coupled approach was applied to stations NS97-43, NS99-53 (T1), NS99-53 (T2). New production thus quantified were 4.4, 5.1 and 5.7 mmolC·m-2·d-1, respectively. f ratios in the South China Sea were estimated from the derived new production and the documented primary productivity in the regime, to be 0.12-0.15.
基金supported by Key Subject Fund of Shanghai Education Committee (No. J50702)Open Foundation of the Key Subject in Environmental Engineering of Shanghai Ocean University(No. B820609000404)Initial Foundation for Ph. D. of ShanghaiOcean University (No. B820607000402)
文摘A nutrient-phytoplankton-zooplankton-detritus (NPZD) type of marine ecosystem model was developed in this study,and was further coupled to a three-dimensional primitive-equation ocean circulation model with a river discharge model and a solar radiation model to reproduce the dynamics of the low nutrition level in the Bohai Sea (BS).The simulation results were validated by observations and it was shown that the seasonal variation in the phytoplankton biomass could be characterized by the double-peak structure,corresponding to the spring and summer blooms,respectively.It was also found that both nitrogen and phosphate declined to the lowest level after the onset of the summer bloom,since the large amounts of nutrients were exhausted by phytoplankton for photosynthesis,and the concentrations of nutrients could resume in winter after a series of the biogeochemical-physical processes.By calculating the nitrogen/phosphorus (N/P) ratio,it is easy to see that the phytoplankton dynamics is nitrogen-limited as a whole in BS,though the phosphorus limitation may occur in the Yellow River (YR) Estuary where the input of riverine nitrogen is much more than that of phosphate.