建立循环流化床锅炉(circulating fluidized bed boiler,CFBB)的二维几何模型,采用欧拉双流体模型与离散相模型相结合的方法对CFBB燃烧过程进行仿真分析。根据仿真所得锅炉内部床料颗粒、煤粉颗粒分布情况以及气相温度场、浓度场等多物...建立循环流化床锅炉(circulating fluidized bed boiler,CFBB)的二维几何模型,采用欧拉双流体模型与离散相模型相结合的方法对CFBB燃烧过程进行仿真分析。根据仿真所得锅炉内部床料颗粒、煤粉颗粒分布情况以及气相温度场、浓度场等多物理场分布特点,得出结论:同时使用欧拉双流体模型与离散相模型具有可行性;在CFBB燃烧过程中,内部煤粉的火焰位置是变化的。下一步的研究重点是CFBB三维几何模型的仿真分析。展开更多
The aerodynamics of gas-particle suspensions is simulated as an Euler-Euler two-fluid model in a revolving rotor over a particle bed. The interactions of collisions between the blade and particles and particle-particl...The aerodynamics of gas-particle suspensions is simulated as an Euler-Euler two-fluid model in a revolving rotor over a particle bed. The interactions of collisions between the blade and particles and particle-particle interactions are modeled using the kinetic theory of granular flow(KTGF). The gas turbulence induced by the rotation of the rotor is modeled using the kg-εg model. The flow field of a revolving rotor is simulated using the multiple reference frame(MRF) method. The distributions of velocities, volume fractions, and gas pressure are predicted while the aircraft hovers at different altitudes.The gas pressure decreases from the hub to the tip of the blade, and it is higher at the pressure side than that at the suction side of the rotor. The turbulent kinetic energy of the gas increases toward the blade tip. The volume fraction of particles decreases as the hovering altitude increases. The simulated pressure coefficient is compared with that in experimental measurements.展开更多
文摘建立循环流化床锅炉(circulating fluidized bed boiler,CFBB)的二维几何模型,采用欧拉双流体模型与离散相模型相结合的方法对CFBB燃烧过程进行仿真分析。根据仿真所得锅炉内部床料颗粒、煤粉颗粒分布情况以及气相温度场、浓度场等多物理场分布特点,得出结论:同时使用欧拉双流体模型与离散相模型具有可行性;在CFBB燃烧过程中,内部煤粉的火焰位置是变化的。下一步的研究重点是CFBB三维几何模型的仿真分析。
基金Project supported by the National Natural Science Foundation of China(Nos.91752115 and 51776059)
文摘The aerodynamics of gas-particle suspensions is simulated as an Euler-Euler two-fluid model in a revolving rotor over a particle bed. The interactions of collisions between the blade and particles and particle-particle interactions are modeled using the kinetic theory of granular flow(KTGF). The gas turbulence induced by the rotation of the rotor is modeled using the kg-εg model. The flow field of a revolving rotor is simulated using the multiple reference frame(MRF) method. The distributions of velocities, volume fractions, and gas pressure are predicted while the aircraft hovers at different altitudes.The gas pressure decreases from the hub to the tip of the blade, and it is higher at the pressure side than that at the suction side of the rotor. The turbulent kinetic energy of the gas increases toward the blade tip. The volume fraction of particles decreases as the hovering altitude increases. The simulated pressure coefficient is compared with that in experimental measurements.