The rotation-minimizing frame is the main research object for a spatial curve. Although the mathematical description is not complicated, it is not easy to directly make an exact minimizing-rotation frame for the Euler...The rotation-minimizing frame is the main research object for a spatial curve. Although the mathematical description is not complicated, it is not easy to directly make an exact minimizing-rotation frame for the Euler-Rodrigues frame. The condition for the non-normalized Euler-Rodrigues frame of the Pythagorean-Hodograph curve to become the rotation-minimizing frame is given in this article, which is an ordinary differential equation with rational form, the analytical solution that does not always exist. To avoid calculating the solution of ordinary differential equations, a global optimization algorithm for the conditions is proposed, that has a weight function in the objective function. The quintic Pythagorean-Hodograph curve is analyzed concretely with the method, and its objective function and constraint conditions of optimization are clarified. The example is analyzed by using this method with different weight functions and contrasting that approach with its exact value.展开更多
Tensor flight dynamics solves flight dynamics problems using Cartesian tensors, which are invariant under coordinate transformations, rather than Gibbs’ vectors, which change under time-varying transformations. Three...Tensor flight dynamics solves flight dynamics problems using Cartesian tensors, which are invariant under coordinate transformations, rather than Gibbs’ vectors, which change under time-varying transformations. Three tensors of rank two play a prominent role and are the subject of this paper: moment of inertia, rotation, and angular velocity tensor. A new theorem is proven governing the shift of reference frames, which is used to derive the angular velocity tensor from the rotation tensor. As applications, the general strap-down INS equations are derived, and the effect of the time-rate-of-change of the moment of inertia tensor on missile dynamics is investigated.展开更多
文摘The rotation-minimizing frame is the main research object for a spatial curve. Although the mathematical description is not complicated, it is not easy to directly make an exact minimizing-rotation frame for the Euler-Rodrigues frame. The condition for the non-normalized Euler-Rodrigues frame of the Pythagorean-Hodograph curve to become the rotation-minimizing frame is given in this article, which is an ordinary differential equation with rational form, the analytical solution that does not always exist. To avoid calculating the solution of ordinary differential equations, a global optimization algorithm for the conditions is proposed, that has a weight function in the objective function. The quintic Pythagorean-Hodograph curve is analyzed concretely with the method, and its objective function and constraint conditions of optimization are clarified. The example is analyzed by using this method with different weight functions and contrasting that approach with its exact value.
文摘Tensor flight dynamics solves flight dynamics problems using Cartesian tensors, which are invariant under coordinate transformations, rather than Gibbs’ vectors, which change under time-varying transformations. Three tensors of rank two play a prominent role and are the subject of this paper: moment of inertia, rotation, and angular velocity tensor. A new theorem is proven governing the shift of reference frames, which is used to derive the angular velocity tensor from the rotation tensor. As applications, the general strap-down INS equations are derived, and the effect of the time-rate-of-change of the moment of inertia tensor on missile dynamics is investigated.