A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view...A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view a number of algorithms.展开更多
Polysurfacic tori or kideas are three-dimensional objects formed by rotating a regular polygon around a central axis. These toric shapes are referred to as “polysurfacic” because their characteristics, such as the n...Polysurfacic tori or kideas are three-dimensional objects formed by rotating a regular polygon around a central axis. These toric shapes are referred to as “polysurfacic” because their characteristics, such as the number of sides or surfaces separated by edges, can vary in a non-trivial manner depending on the degree of twisting during the revolution. We use the term “Kideas” to specifically denote these polysurfacic tori, and we represent the number of sides (referred to as “facets”) of the original polygon followed by a point, while the number of facets from which the torus is twisted during its revolution is indicated. We then explore the use of concave regular polygons to generate Kideas. We finally give acceleration for the algorithm for calculating the set of prime numbers.展开更多
The continuous mediums are divided into two kinds according to their geometrical configurations,the first one is related to Euclidian manifolds and the other one to Riemannian manifolds/surfaces in the point of view o...The continuous mediums are divided into two kinds according to their geometrical configurations,the first one is related to Euclidian manifolds and the other one to Riemannian manifolds/surfaces in the point of view of the modern geometry.Two kinds of finite deformation theories with respect to Euclidian and Riemannian manifolds have been developed in the present paper.Both kinds of theories include the definitions of initial and current physical and parametric configurations,deformation gradient tensors with properties,deformation descriptions,transport theories and governing equations of nature conservation laws.The essential property of the theory with respect to Euclidian manifolds is that the curvilinear coordinates corresponding to the current physical configurations include time explicitly through which the geometrically irregular and time varying physical configurations can be mapped in the diffeomorphism manner to the regular and fixed domains in the parametric space.It is quite essential to the study of the relationships between geometries and mechanics.The theory with respect to Riemannian manifolds provides the systemic ideas and methods to study the deformations of continuous mediums whose geometrical configurations can be considered as general surfaces.The essential property of the theory with respect to Riemannian manifolds is that the thickness variation of a patch of continuous medium is represented by the surface density and its governing equation is rigorously deduced.As some applications,wakes of cylinders with deformable boundaries on the plane,incompressible wakes of a circular cylinder on fixed surfaces and axisymmetric finite deformations of an elastic membrane are numerically studied.展开更多
As the days go by, there are technologies that are being introduced everyday, whether it is a tiny music player iPod nano or a robot “Asimo” that runs 6 kilometers per hour. These technologies entertain, facilitate ...As the days go by, there are technologies that are being introduced everyday, whether it is a tiny music player iPod nano or a robot “Asimo” that runs 6 kilometers per hour. These technologies entertain, facilitate and make the day easier for the human being. It is not arguable anymore that the people need these technologies with the smart systems to lead their regular life smoothly. The smarter the system is;the more people like to use it. One major part of this smartness of the system depends on how well the system can interact with the person or the user. It is not a dream anymore that a system will be able to interact with a human just the way that one human interacts with another. To make that happen, it is obvious that the system must be intelligent enough to understand a human being. For example, if we need a Robot that can have a random conversation with a human, the system must recognize and understand the spoken word to reply the human. And the reply will be based on the current mood and behavior of the human. In this scenario, a human uses his senses to receive the inputs such as voice through the hearing senses, behavior and movement of the body parts, and facial expression through seeing sense from the speaking human. And it is now apparently possible to take such inputs for a system which can be stored as data;later it is possible to analyze the data using various algorithms and also to teach the system through Machine Learning algorithms. We will briefly discuss issues related to the relevance and the possible impact of research in the field of Artificial Intelligence, with special attention to the Computer Vision and Pattern Recognition, Natural Language Processing, Human Computer Interaction, Data Warehouse and Data Mining that is used to identify and analyze data like psychological signals, voice, conversation, geo location, and geo weather, etc. In our research, we have used heart rate that is a successful physiological signal to detect human mood and used smartphone usage data to train the展开更多
A procedure for evaluating the degree of spheroidization of phosphide platelets in cast Cu-4%Sn- 5%P alloys using fractal analysis was investigated. The specimens were obtained by melting copper and tin in an improvis...A procedure for evaluating the degree of spheroidization of phosphide platelets in cast Cu-4%Sn- 5%P alloys using fractal analysis was investigated. The specimens were obtained by melting copper and tin in an improvised clay mould raised to a temperature of 1850°C ± 20°C, holding for a period of 10 minutes to 1 hour to modify the aspect ratio of the phosphide platelets. It was found that these platelets have the tendency to change their shape from being spherical to more Euclidian shapes as time elapses. It was found that the inter-platelets distances are approximately equal with time. This effect was more pronounced in samples with high holding time.展开更多
In this paper, I discuss whether superluminal particles exist in the general relativistic theory of gravity. It seems that the answer to this question is negative. In truth, the result may only represent a difficulty ...In this paper, I discuss whether superluminal particles exist in the general relativistic theory of gravity. It seems that the answer to this question is negative. In truth, the result may only represent a difficulty to special but not general relativity, the later allowing both Lorentzian and Euclidian metrics. An Euclidian metric does not restrict speed. Although only the Lorentzian metric is stable, an Euclidian metric can be created under special gravitational circumstances and persist in a limited region of space-time causing possible superluminality.展开更多
The study of the entrance and wall dynamics of a high-flux gas-solid riser was conducted using trajectory distances of the reconstructed attractors from solid concentration signals collected from a 76 mm internal diam...The study of the entrance and wall dynamics of a high-flux gas-solid riser was conducted using trajectory distances of the reconstructed attractors from solid concentration signals collected from a 76 mm internal diameters and 10 m high riser of a circulating fluidized bed (CFB) system. The riser was operated at 4.0 to 10.0 m/s gas velocity and 50 to 550 kg/m2s solids flux. Spent fluid catalytic cracking (FCC) catalyst particles with 67 μm mean diameter and density of 1500 kg/m3 together with 70% to 80% humid air was used. Solid concentration data were analyzed using codes prepared in FORTRAN 2008 to get trajectories of the reconstructed attractors and their distances apart. Trajectory distances were found to increase from the centre towards the wall indicating the expansion of the attractor. The probability density function (PDF) of the trajectory distances changes from single peak at the centre to multiple peaked profiles in the wall region. Multiple peaked profiles indicate multifractal flow behaviours. Cumulative distribution functions (CDF) of the trajectory distances changes from single S-shaped at the centre to multiple S-shaped profiles in some locations of the wall region indicating multifractal flow behaviours. The PDF distribution of these distances at the entrance section and in the wall region forms different types of statistical distributions showing differences in gas-solid flow structures in various spatial locations of the wall region and the entrance sections. Most of the distributions at the centre fall under the Gumbel max distribution for all flow development sections of the riser, especially at air velocities of 5.5 m/s and 8 m/s showing uniform flow structures. Further, it was found that increase of the number of the phase space reconstruction embedding dimension increases the trajectory distances between the state vectors leading to the expansion of the attractor.展开更多
Faster-than-Nyquist(FTN)signaling can improve the spectrum efficiency(SE)of the transmission system.In this paper,we propose a coded modulation FTN(CM-FTN)transmission scheme with precoder and channel shortening(CS)op...Faster-than-Nyquist(FTN)signaling can improve the spectrum efficiency(SE)of the transmission system.In this paper,we propose a coded modulation FTN(CM-FTN)transmission scheme with precoder and channel shortening(CS)optimization to improve bit error rate(BER)performance and reduce the complexity of FTN equalizer.In our proposal,the information rate(IR)or spectral efficiency(SE)is employed and verified as a better performance metric for CM-FTN than the minimum Euclidian distance(MED).The precoder of CM-FTN is optimized for maximizing the IR criterion using the bare-bones particle swarm optimization(BB-PSO)algorithm.Further,a three-carrier CM-FTN system model is used to capture the broadening effect of precoder.Also targeting for the IR maximization,the inter-symbol interference(ISI)length for CS is optimized to reduce the receiver complexity without performance loss.Simulation results demonstrate that our method has a 0.6dB precoding gain compared with the nonprecoding scheme and a maximum of 87.5%of the complexity of FTN equalizer is reduced without BER loss.展开更多
By using the conformal method, solutions of the Einstein-scalar ficld gravitational constraint equations are obtained. Handling scalar fields is a bit more challenging than handling matter fields such as fluids, Maxwe...By using the conformal method, solutions of the Einstein-scalar ficld gravitational constraint equations are obtained. Handling scalar fields is a bit more challenging than handling matter fields such as fluids, Maxwell fields or Yang-Mills fields, because the scalar field introduces three extra terms into the Lichnerowicz equation, rather than just one. The proofs are constructive and allow for arbitrary dimension (〉 2) as well as low regularity initial data.展开更多
文摘A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view a number of algorithms.
文摘Polysurfacic tori or kideas are three-dimensional objects formed by rotating a regular polygon around a central axis. These toric shapes are referred to as “polysurfacic” because their characteristics, such as the number of sides or surfaces separated by edges, can vary in a non-trivial manner depending on the degree of twisting during the revolution. We use the term “Kideas” to specifically denote these polysurfacic tori, and we represent the number of sides (referred to as “facets”) of the original polygon followed by a point, while the number of facets from which the torus is twisted during its revolution is indicated. We then explore the use of concave regular polygons to generate Kideas. We finally give acceleration for the algorithm for calculating the set of prime numbers.
基金supported by the National Nature Science Foundation of China (Grant Nos. 11172069 and 10872051)some key project of education reforms issued by the Shanghai Municipal Education Commission (2011)
文摘The continuous mediums are divided into two kinds according to their geometrical configurations,the first one is related to Euclidian manifolds and the other one to Riemannian manifolds/surfaces in the point of view of the modern geometry.Two kinds of finite deformation theories with respect to Euclidian and Riemannian manifolds have been developed in the present paper.Both kinds of theories include the definitions of initial and current physical and parametric configurations,deformation gradient tensors with properties,deformation descriptions,transport theories and governing equations of nature conservation laws.The essential property of the theory with respect to Euclidian manifolds is that the curvilinear coordinates corresponding to the current physical configurations include time explicitly through which the geometrically irregular and time varying physical configurations can be mapped in the diffeomorphism manner to the regular and fixed domains in the parametric space.It is quite essential to the study of the relationships between geometries and mechanics.The theory with respect to Riemannian manifolds provides the systemic ideas and methods to study the deformations of continuous mediums whose geometrical configurations can be considered as general surfaces.The essential property of the theory with respect to Riemannian manifolds is that the thickness variation of a patch of continuous medium is represented by the surface density and its governing equation is rigorously deduced.As some applications,wakes of cylinders with deformable boundaries on the plane,incompressible wakes of a circular cylinder on fixed surfaces and axisymmetric finite deformations of an elastic membrane are numerically studied.
文摘As the days go by, there are technologies that are being introduced everyday, whether it is a tiny music player iPod nano or a robot “Asimo” that runs 6 kilometers per hour. These technologies entertain, facilitate and make the day easier for the human being. It is not arguable anymore that the people need these technologies with the smart systems to lead their regular life smoothly. The smarter the system is;the more people like to use it. One major part of this smartness of the system depends on how well the system can interact with the person or the user. It is not a dream anymore that a system will be able to interact with a human just the way that one human interacts with another. To make that happen, it is obvious that the system must be intelligent enough to understand a human being. For example, if we need a Robot that can have a random conversation with a human, the system must recognize and understand the spoken word to reply the human. And the reply will be based on the current mood and behavior of the human. In this scenario, a human uses his senses to receive the inputs such as voice through the hearing senses, behavior and movement of the body parts, and facial expression through seeing sense from the speaking human. And it is now apparently possible to take such inputs for a system which can be stored as data;later it is possible to analyze the data using various algorithms and also to teach the system through Machine Learning algorithms. We will briefly discuss issues related to the relevance and the possible impact of research in the field of Artificial Intelligence, with special attention to the Computer Vision and Pattern Recognition, Natural Language Processing, Human Computer Interaction, Data Warehouse and Data Mining that is used to identify and analyze data like psychological signals, voice, conversation, geo location, and geo weather, etc. In our research, we have used heart rate that is a successful physiological signal to detect human mood and used smartphone usage data to train the
文摘A procedure for evaluating the degree of spheroidization of phosphide platelets in cast Cu-4%Sn- 5%P alloys using fractal analysis was investigated. The specimens were obtained by melting copper and tin in an improvised clay mould raised to a temperature of 1850°C ± 20°C, holding for a period of 10 minutes to 1 hour to modify the aspect ratio of the phosphide platelets. It was found that these platelets have the tendency to change their shape from being spherical to more Euclidian shapes as time elapses. It was found that the inter-platelets distances are approximately equal with time. This effect was more pronounced in samples with high holding time.
文摘In this paper, I discuss whether superluminal particles exist in the general relativistic theory of gravity. It seems that the answer to this question is negative. In truth, the result may only represent a difficulty to special but not general relativity, the later allowing both Lorentzian and Euclidian metrics. An Euclidian metric does not restrict speed. Although only the Lorentzian metric is stable, an Euclidian metric can be created under special gravitational circumstances and persist in a limited region of space-time causing possible superluminality.
文摘The study of the entrance and wall dynamics of a high-flux gas-solid riser was conducted using trajectory distances of the reconstructed attractors from solid concentration signals collected from a 76 mm internal diameters and 10 m high riser of a circulating fluidized bed (CFB) system. The riser was operated at 4.0 to 10.0 m/s gas velocity and 50 to 550 kg/m2s solids flux. Spent fluid catalytic cracking (FCC) catalyst particles with 67 μm mean diameter and density of 1500 kg/m3 together with 70% to 80% humid air was used. Solid concentration data were analyzed using codes prepared in FORTRAN 2008 to get trajectories of the reconstructed attractors and their distances apart. Trajectory distances were found to increase from the centre towards the wall indicating the expansion of the attractor. The probability density function (PDF) of the trajectory distances changes from single peak at the centre to multiple peaked profiles in the wall region. Multiple peaked profiles indicate multifractal flow behaviours. Cumulative distribution functions (CDF) of the trajectory distances changes from single S-shaped at the centre to multiple S-shaped profiles in some locations of the wall region indicating multifractal flow behaviours. The PDF distribution of these distances at the entrance section and in the wall region forms different types of statistical distributions showing differences in gas-solid flow structures in various spatial locations of the wall region and the entrance sections. Most of the distributions at the centre fall under the Gumbel max distribution for all flow development sections of the riser, especially at air velocities of 5.5 m/s and 8 m/s showing uniform flow structures. Further, it was found that increase of the number of the phase space reconstruction embedding dimension increases the trajectory distances between the state vectors leading to the expansion of the attractor.
基金This work was supported by National Natural Science Foundation of China(No.61961014).
文摘Faster-than-Nyquist(FTN)signaling can improve the spectrum efficiency(SE)of the transmission system.In this paper,we propose a coded modulation FTN(CM-FTN)transmission scheme with precoder and channel shortening(CS)optimization to improve bit error rate(BER)performance and reduce the complexity of FTN equalizer.In our proposal,the information rate(IR)or spectral efficiency(SE)is employed and verified as a better performance metric for CM-FTN than the minimum Euclidian distance(MED).The precoder of CM-FTN is optimized for maximizing the IR criterion using the bare-bones particle swarm optimization(BB-PSO)algorithm.Further,a three-carrier CM-FTN system model is used to capture the broadening effect of precoder.Also targeting for the IR maximization,the inter-symbol interference(ISI)length for CS is optimized to reduce the receiver complexity without performance loss.Simulation results demonstrate that our method has a 0.6dB precoding gain compared with the nonprecoding scheme and a maximum of 87.5%of the complexity of FTN equalizer is reduced without BER loss.
基金Project supported by NSF Grant PHY-0354659 at the University of Oregonby NSF Grant DMS-0305048 at the University of Washington.
文摘By using the conformal method, solutions of the Einstein-scalar ficld gravitational constraint equations are obtained. Handling scalar fields is a bit more challenging than handling matter fields such as fluids, Maxwell fields or Yang-Mills fields, because the scalar field introduces three extra terms into the Lichnerowicz equation, rather than just one. The proofs are constructive and allow for arbitrary dimension (〉 2) as well as low regularity initial data.